{"title":"Mycotoxigenic Fusarium species and zearalenone concentration in commercial maize kernels in northern Ghana.","authors":"Nelson Opoku, Abdul Rashid Hudu, Francis Addy","doi":"10.1007/s12550-024-00544-3","DOIUrl":null,"url":null,"abstract":"<p><p>The fungal genus Fusarium contains many toxigenic pathogens of maize with associated yield losses, reduction of grain quality, and accumulation of mycotoxins in harvested grains. To determine zearalenone (ZEN) concentration and identify the various Fusarium species in commercial maize grains, a survey of 75 maize samples, collected from 11 market centers in the five regions in northern Ghana was identified based on morphological characteristics, sequence analysis of the internal transcribed spacer region, and polymerase chain reaction using species-specific primers. ZEN levels were determined using HPLC. ZEN contamination was recorded in 33.3% of the maize samples, with concentrations ranging from 0.61 to 3.05 µg/kg. Based on VERT1/2 and TEF 1-α sequencing, F. verticillioides was the most prevalent species in the studied samples: 40.35% from the Upper East Region, 28.07% from the North East Region, 19.30% from the Upper West Region, 10.53% from the Savannah Region, and 1.75% for the Northern Region. Other fungal species found were F. equiseti and F. solani. A higher number of the Fusarium isolates were found in white maize (609 isolates from 27 samples) compared to yellow maize (225 isolates from 23 samples).</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"581-590"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-024-00544-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fungal genus Fusarium contains many toxigenic pathogens of maize with associated yield losses, reduction of grain quality, and accumulation of mycotoxins in harvested grains. To determine zearalenone (ZEN) concentration and identify the various Fusarium species in commercial maize grains, a survey of 75 maize samples, collected from 11 market centers in the five regions in northern Ghana was identified based on morphological characteristics, sequence analysis of the internal transcribed spacer region, and polymerase chain reaction using species-specific primers. ZEN levels were determined using HPLC. ZEN contamination was recorded in 33.3% of the maize samples, with concentrations ranging from 0.61 to 3.05 µg/kg. Based on VERT1/2 and TEF 1-α sequencing, F. verticillioides was the most prevalent species in the studied samples: 40.35% from the Upper East Region, 28.07% from the North East Region, 19.30% from the Upper West Region, 10.53% from the Savannah Region, and 1.75% for the Northern Region. Other fungal species found were F. equiseti and F. solani. A higher number of the Fusarium isolates were found in white maize (609 isolates from 27 samples) compared to yellow maize (225 isolates from 23 samples).
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.