Ruchira M Jha, Dhivyaa Rajasundaram, Chaim Sneiderman, Brent T Schlegel, Casey O'Brien, Zujian Xiong, Keri Janesko-Feldman, Ria Trivedi, Vincent Vagni, Benjamin E Zusman, Joshua S Catapano, Adam Eberle, Shashvat M Desai, Ashutosh P Jadhav, Sandra Mihaljevic, Margaux Miller, Sudhanshu Raikwar, Anupama Rani, Jarrod Rulney, Shima Shahjouie, Itay Raphael, Aditya Kumar, Chia-Ling Phuah, Ethan A Winkler, Dennis W Simon, Patrick M Kochanek, Gary Kohanbash
{"title":"A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets.","authors":"Ruchira M Jha, Dhivyaa Rajasundaram, Chaim Sneiderman, Brent T Schlegel, Casey O'Brien, Zujian Xiong, Keri Janesko-Feldman, Ria Trivedi, Vincent Vagni, Benjamin E Zusman, Joshua S Catapano, Adam Eberle, Shashvat M Desai, Ashutosh P Jadhav, Sandra Mihaljevic, Margaux Miller, Sudhanshu Raikwar, Anupama Rani, Jarrod Rulney, Shima Shahjouie, Itay Raphael, Aditya Kumar, Chia-Ling Phuah, Ethan A Winkler, Dennis W Simon, Patrick M Kochanek, Gary Kohanbash","doi":"10.1016/j.neuron.2024.06.021","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3069-3088.e4"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.06.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.