Pub Date : 2024-11-13DOI: 10.1016/j.neuron.2024.10.018
Bin Wu, Ling Meng, Yan Zhao, Junjie Li, Qiuyun Tian, Yayan Pang, Chunguang Ren, Zhifang Dong
Social creatures must attend to threat signals from conspecifics and respond appropriately, both behaviorally and physiologically. In this work, we show in mice a threat-sensitive immune mechanism that orchestrates psychological processes and is amenable to social modulation. Repeated encounters with socially cued threats triggered meningeal neutrophil (MN) priming preferentially in males. MN activity was correlated with attenuated defensive responses to cues. Canonical neutrophil-specific activation marker CD177 was upregulated after social threat cueing, and its genetic ablation abrogated male behavioral phenotypes. CD177 signals favored meningeal T helper (Th)1-like immune bias, which blunted neural response to threatening stimuli by enhancing intrinsic GABAergic inhibition within the prelimbic cortex via interferon-gamma (IFN-γ). MN signaling was sensitized by negative emotional states and governed by socially dependent androgen release. This male-biased hormone/neutrophil regulatory axis is seemingly conserved in humans. Our findings provide insights into how immune responses influence behavioral threat responses, suggesting a possible neuroimmune basis of emotional regulation.
{"title":"Meningeal neutrophil immune signaling influences behavioral adaptation following threat.","authors":"Bin Wu, Ling Meng, Yan Zhao, Junjie Li, Qiuyun Tian, Yayan Pang, Chunguang Ren, Zhifang Dong","doi":"10.1016/j.neuron.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.10.018","url":null,"abstract":"<p><p>Social creatures must attend to threat signals from conspecifics and respond appropriately, both behaviorally and physiologically. In this work, we show in mice a threat-sensitive immune mechanism that orchestrates psychological processes and is amenable to social modulation. Repeated encounters with socially cued threats triggered meningeal neutrophil (MN) priming preferentially in males. MN activity was correlated with attenuated defensive responses to cues. Canonical neutrophil-specific activation marker CD177 was upregulated after social threat cueing, and its genetic ablation abrogated male behavioral phenotypes. CD177 signals favored meningeal T helper (Th)1-like immune bias, which blunted neural response to threatening stimuli by enhancing intrinsic GABAergic inhibition within the prelimbic cortex via interferon-gamma (IFN-γ). MN signaling was sensitized by negative emotional states and governed by socially dependent androgen release. This male-biased hormone/neutrophil regulatory axis is seemingly conserved in humans. Our findings provide insights into how immune responses influence behavioral threat responses, suggesting a possible neuroimmune basis of emotional regulation.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.neuron.2024.10.020
Daniel D Kato, Randy M Bruno
Merging information across sensory modalities is key to forming robust percepts, yet how the brain achieves this feat remains unclear. Recent studies report cross-modal influences in the primary sensory cortex, suggesting possible multisensory integration in the early stages of cortical processing. We test several hypotheses about the function of auditory influences on mouse primary somatosensory cortex (S1) using in vivo two-photon calcium imaging. We found sound-evoked spiking activity in an extremely small fraction of cells, and this sparse activity did not encode auditory stimulus identity. Moreover, S1 did not encode information about specific audio-tactile feature conjunctions. Auditory and audio-tactile stimulus encoding remained unchanged after both passive experience and reinforcement. These results suggest that while primary sensory cortex is plastic within its own modality, the influence of other modalities is remarkably stable and stimulus nonspecific.
{"title":"Stability of cross-sensory input to primary somatosensory cortex across experience.","authors":"Daniel D Kato, Randy M Bruno","doi":"10.1016/j.neuron.2024.10.020","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.10.020","url":null,"abstract":"<p><p>Merging information across sensory modalities is key to forming robust percepts, yet how the brain achieves this feat remains unclear. Recent studies report cross-modal influences in the primary sensory cortex, suggesting possible multisensory integration in the early stages of cortical processing. We test several hypotheses about the function of auditory influences on mouse primary somatosensory cortex (S1) using in vivo two-photon calcium imaging. We found sound-evoked spiking activity in an extremely small fraction of cells, and this sparse activity did not encode auditory stimulus identity. Moreover, S1 did not encode information about specific audio-tactile feature conjunctions. Auditory and audio-tactile stimulus encoding remained unchanged after both passive experience and reinforcement. These results suggest that while primary sensory cortex is plastic within its own modality, the influence of other modalities is remarkably stable and stimulus nonspecific.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.neuron.2024.11.001
Yingjun Zhao, I-Chu Tseng, Charles J Heyser, Edward Rockenstein, Michael Mante, Anthony Adame, Qiuyang Zheng, Timothy Huang, Xin Wang, Pharhad E Arslan, Paramita Chakrabarty, Chengbiao Wu, Guojun Bu, William C Mobley, Yun-Wu Zhang, Peter St George-Hyslop, Eliezer Masliah, Paul Fraser, Huaxi Xu
{"title":"Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis.","authors":"Yingjun Zhao, I-Chu Tseng, Charles J Heyser, Edward Rockenstein, Michael Mante, Anthony Adame, Qiuyang Zheng, Timothy Huang, Xin Wang, Pharhad E Arslan, Paramita Chakrabarty, Chengbiao Wu, Guojun Bu, William C Mobley, Yun-Wu Zhang, Peter St George-Hyslop, Eliezer Masliah, Paul Fraser, Huaxi Xu","doi":"10.1016/j.neuron.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.11.001","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.
{"title":"Phosphorylation of Piezo1 at a single residue, serine-1612, regulates its mechanosensitivity and in vivo mechanotransduction function.","authors":"Tingxin Zhang, Cheng Bi, Yiran Li, Lingyun Zhao, Yaxiong Cui, Kunfu Ouyang, Bailong Xiao","doi":"10.1016/j.neuron.2024.08.009","DOIUrl":"10.1016/j.neuron.2024.08.009","url":null,"abstract":"<p><p>Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3618-3633.e6"},"PeriodicalIF":14.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.neuron.2024.10.019
Janos Groh, Mikael Simons
Aging has a detrimental impact on white matter, resulting in reduced volume, compromised structural integrity of myelinated axons, and an increase in white matter hyperintensities. These changes are closely linked to cognitive decline and neurological disabilities. The deterioration of myelin and its diminished ability to regenerate as we age further contribute to the progression of neurodegenerative disorders. Understanding these changes is crucial for devising effective disease prevention strategies. Here, we will discuss the structural alterations in white matter that occur with aging and examine the cellular and molecular mechanisms driving these aging-related transformations. We highlight how the progressive disruption of white matter may initiate a self-perpetuating cycle of inflammation and neural damage.
{"title":"White matter aging and its impact on brain function.","authors":"Janos Groh, Mikael Simons","doi":"10.1016/j.neuron.2024.10.019","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.10.019","url":null,"abstract":"<p><p>Aging has a detrimental impact on white matter, resulting in reduced volume, compromised structural integrity of myelinated axons, and an increase in white matter hyperintensities. These changes are closely linked to cognitive decline and neurological disabilities. The deterioration of myelin and its diminished ability to regenerate as we age further contribute to the progression of neurodegenerative disorders. Understanding these changes is crucial for devising effective disease prevention strategies. Here, we will discuss the structural alterations in white matter that occur with aging and examine the cellular and molecular mechanisms driving these aging-related transformations. We highlight how the progressive disruption of white matter may initiate a self-perpetuating cycle of inflammation and neural damage.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.neuron.2024.10.016
Ye Zhang, Wei Duan, Lingchao Chen, Junrui Chen, Wei Xu, Qi Fan, Shuwei Li, Yuandong Liu, Shidi Wang, Quansheng He, Xiaohui Li, Yang Huang, Haibao Peng, Jiaxu Zhao, Qiangqiang Zhang, Zhixin Qiu, Zhicheng Shao, Bo Zhang, Yihua Wang, Yang Tian, Yousheng Shu, Zhiyong Qin, Yudan Chi
The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K+ channel KV4.2, enhancing neuronal excitability via accumulation of extracellular K+, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.
{"title":"Potassium ion channel modulation at cancer-neural interface enhances neuronal excitability in epileptogenic glioblastoma multiforme.","authors":"Ye Zhang, Wei Duan, Lingchao Chen, Junrui Chen, Wei Xu, Qi Fan, Shuwei Li, Yuandong Liu, Shidi Wang, Quansheng He, Xiaohui Li, Yang Huang, Haibao Peng, Jiaxu Zhao, Qiangqiang Zhang, Zhixin Qiu, Zhicheng Shao, Bo Zhang, Yihua Wang, Yang Tian, Yousheng Shu, Zhiyong Qin, Yudan Chi","doi":"10.1016/j.neuron.2024.10.016","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.10.016","url":null,"abstract":"<p><p>The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K<sup>+</sup> channel K<sub>V</sub>4.2, enhancing neuronal excitability via accumulation of extracellular K<sup>+</sup>, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.
{"title":"From animal models to human individuality: Integrative approaches to the study of brain plasticity.","authors":"Maike Hille, Simone Kühn, Gerd Kempermann, Tobias Bonhoeffer, Ulman Lindenberger","doi":"10.1016/j.neuron.2024.10.006","DOIUrl":"10.1016/j.neuron.2024.10.006","url":null,"abstract":"<p><p>Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3522-3541"},"PeriodicalIF":14.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-09-12DOI: 10.1016/j.neuron.2024.08.010
Jingwen Liang, Yu Zhou, Qiru Feng, Youtong Zhou, Tao Jiang, Miao Ren, Xueyan Jia, Hui Gong, Run Di, Peijie Jiao, Minmin Luo
Dynamic gain control of aversive signals enables adaptive behavioral responses. Although the role of amygdalar circuits in aversive processing is well established, the neural pathway for amplifying aversion remains elusive. Here, we show that the brainstem circuit linking the interpeduncular nucleus (IPN) with the nucleus incertus (NI) amplifies aversion and promotes avoidant behaviors. IPN GABA neurons are activated by aversive stimuli and their predicting cues, with their response intensity closely tracking aversive values. Activating these neurons does not trigger aversive behavior on its own but rather amplifies responses to aversive stimuli, whereas their ablation or inhibition suppresses such responses. Detailed circuit dissection revealed anatomically distinct subgroups within the IPN GABA neuron population, highlighting the NI-projecting subgroup as the modulator of aversiveness related to fear and opioid withdrawal. These findings unveil the IPN-NI circuit as an aversion amplifier and suggest potential targets for interventions against affective disorders and opioid relapse.
通过对厌恶信号进行动态增益控制,可以做出适应性行为反应。虽然杏仁核回路在厌恶处理中的作用已得到证实,但放大厌恶的神经通路仍然难以捉摸。在这里,我们展示了连接小脑间核(IPN)和钝核(NI)的脑干回路能放大厌恶并促进回避行为。IPN GABA神经元会被厌恶刺激及其预测线索激活,其反应强度与厌恶值密切相关。激活这些神经元本身并不会引发厌恶行为,而是会放大对厌恶刺激的反应,而消融或抑制这些神经元则会抑制这种反应。详细的回路解剖揭示了 IPN GABA 神经元群中解剖学上不同的亚群,突出表明 NI 突起亚群是与恐惧和阿片戒断相关的厌恶性的调节器。这些发现揭示了IPN-NI回路是一种厌恶放大器,并提出了干预情感障碍和阿片类药物复发的潜在目标。
{"title":"A brainstem circuit amplifies aversion.","authors":"Jingwen Liang, Yu Zhou, Qiru Feng, Youtong Zhou, Tao Jiang, Miao Ren, Xueyan Jia, Hui Gong, Run Di, Peijie Jiao, Minmin Luo","doi":"10.1016/j.neuron.2024.08.010","DOIUrl":"10.1016/j.neuron.2024.08.010","url":null,"abstract":"<p><p>Dynamic gain control of aversive signals enables adaptive behavioral responses. Although the role of amygdalar circuits in aversive processing is well established, the neural pathway for amplifying aversion remains elusive. Here, we show that the brainstem circuit linking the interpeduncular nucleus (IPN) with the nucleus incertus (NI) amplifies aversion and promotes avoidant behaviors. IPN GABA neurons are activated by aversive stimuli and their predicting cues, with their response intensity closely tracking aversive values. Activating these neurons does not trigger aversive behavior on its own but rather amplifies responses to aversive stimuli, whereas their ablation or inhibition suppresses such responses. Detailed circuit dissection revealed anatomically distinct subgroups within the IPN GABA neuron population, highlighting the NI-projecting subgroup as the modulator of aversiveness related to fear and opioid withdrawal. These findings unveil the IPN-NI circuit as an aversion amplifier and suggest potential targets for interventions against affective disorders and opioid relapse.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3634-3650.e5"},"PeriodicalIF":14.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06Epub Date: 2024-09-23DOI: 10.1016/j.neuron.2024.08.020
Jingwen Li, Mikio C Aoi, Cory T Miller
Here, we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based generalized linear model (GLM) analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout the frontal cortex as freely moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and have implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.
{"title":"Representing the dynamics of natural marmoset vocal behaviors in frontal cortex.","authors":"Jingwen Li, Mikio C Aoi, Cory T Miller","doi":"10.1016/j.neuron.2024.08.020","DOIUrl":"10.1016/j.neuron.2024.08.020","url":null,"abstract":"<p><p>Here, we tested the respective contributions of primate premotor and prefrontal cortex to support vocal behavior. We applied a model-based generalized linear model (GLM) analysis that better accounts for the inherent variance in natural, continuous behaviors to characterize the activity of neurons throughout the frontal cortex as freely moving marmosets engaged in conversational exchanges. While analyses revealed functional clusters of neural activity related to the different processes involved in the vocal behavior, these clusters did not map to subfields of prefrontal or premotor cortex, as has been observed in more conventional task-based paradigms. Our results suggest a distributed functional organization for the myriad neural mechanisms underlying natural social interactions and have implications for our concepts of the role that frontal cortex plays in governing ethological behaviors in primates.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3542-3550.e3"},"PeriodicalIF":3.784,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.neuron.2024.10.002
Katalin M Gothard, Archer I Bowrie
Technological advances allow neurophysiologists to explore the brain during natural behaviors, revealing new functional principles and challenging old ones. In this issue of Neuron, Li1 and colleagues show that the traditional parcellation of the marmoset frontal cortex does not apply to naturalistic conversations.
{"title":"Natural behavior relaxes zoning divisions in the brain.","authors":"Katalin M Gothard, Archer I Bowrie","doi":"10.1016/j.neuron.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.neuron.2024.10.002","url":null,"abstract":"<p><p>Technological advances allow neurophysiologists to explore the brain during natural behaviors, revealing new functional principles and challenging old ones. In this issue of Neuron, Li<sup>1</sup> and colleagues show that the traditional parcellation of the marmoset frontal cortex does not apply to naturalistic conversations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"112 21","pages":"3515-3516"},"PeriodicalIF":14.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}