首页 > 最新文献

Neuron最新文献

英文 中文
A bone-derived hormone permits rapid visual escape via GPR37 receptor in a subpopulation of VTA GABAergic neurons 骨源性激素通过VTA gaba能神经元亚群中的GPR37受体允许快速视觉逃逸
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-11 DOI: 10.1016/j.neuron.2025.12.048
Xuemei Liu, Shuaiyu Wang, Juan Lai, Xiang Gao, Lina Wang, Bo Feng, Liang Yang, Zhengjiang Qian, Ruotian Jiang, Jun Chu, Liming Tan, Xiang Li, Liping Wang
{"title":"A bone-derived hormone permits rapid visual escape via GPR37 receptor in a subpopulation of VTA GABAergic neurons","authors":"Xuemei Liu, Shuaiyu Wang, Juan Lai, Xiang Gao, Lina Wang, Bo Feng, Liang Yang, Zhengjiang Qian, Ruotian Jiang, Jun Chu, Liming Tan, Xiang Li, Liping Wang","doi":"10.1016/j.neuron.2025.12.048","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.048","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"10 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive rejuvenation through partial reprogramming of engram cells 通过印痕细胞的部分重编程实现认知再生
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-10 DOI: 10.1016/j.neuron.2025.11.028
Gabriel Berdugo-Vega, Cesar Sierra, Simone Astori, Veronika Calati, Jules Orsat, Marianne Julie Scoglio, Carmen Sandi, Johannes Gräff
{"title":"Cognitive rejuvenation through partial reprogramming of engram cells","authors":"Gabriel Berdugo-Vega, Cesar Sierra, Simone Astori, Veronika Calati, Jules Orsat, Marianne Julie Scoglio, Carmen Sandi, Johannes Gräff","doi":"10.1016/j.neuron.2025.11.028","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.11.028","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"41 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical traveling waves in time and space: Physics, physiology, and psychology 时间和空间中的皮质行波:物理学、生理学和心理学
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-09 DOI: 10.1016/j.neuron.2025.12.019
Jace Cruddas, James C. Pang, Alex Fornito
Widefield recordings acquired with different resolutions and in diverse species have revealed that cortical activity often propagates as waves of excitation that are structured in both time and space. This realization allows neuroscientists to draw on a rigorous theoretical framework developed in wave physics to inform the physiological mechanisms and psychological implications of cortical wave dynamics. Here, we review core concepts from wave physics and consider their relation to studies of cortical wave physiology and psychology. We examine how cortical waves emerge naturally in the cortex, how they facilitate coordinated, hierarchical, and counterstream dynamics, and how they encode perceptual and behavioral signals. The ubiquity of cortical waves underscores their fundamental role in cortical function. A comprehensive understanding of their significance requires integrating perspectives from physics, physiology, and psychology.
以不同分辨率和不同物种获得的宽视场记录显示,皮层活动通常以在时间和空间上都有结构的兴奋波的形式传播。这一认识使神经科学家能够利用波物理学中发展起来的严格理论框架来了解皮层波动力学的生理机制和心理含义。在这里,我们回顾了波物理学的核心概念,并考虑了它们与皮层波生理学和心理学研究的关系。我们研究皮层波如何在皮层中自然出现,它们如何促进协调,分层和逆流动力学,以及它们如何编码感知和行为信号。皮质波的普遍存在强调了它们在皮质功能中的基本作用。要全面理解它们的意义,需要综合物理学、生理学和心理学的观点。
{"title":"Cortical traveling waves in time and space: Physics, physiology, and psychology","authors":"Jace Cruddas, James C. Pang, Alex Fornito","doi":"10.1016/j.neuron.2025.12.019","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.019","url":null,"abstract":"Widefield recordings acquired with different resolutions and in diverse species have revealed that cortical activity often propagates as waves of excitation that are structured in both time and space. This realization allows neuroscientists to draw on a rigorous theoretical framework developed in wave physics to inform the physiological mechanisms and psychological implications of cortical wave dynamics. Here, we review core concepts from wave physics and consider their relation to studies of cortical wave physiology and psychology. We examine how cortical waves emerge naturally in the cortex, how they facilitate coordinated, hierarchical, and counterstream dynamics, and how they encode perceptual and behavioral signals. The ubiquity of cortical waves underscores their fundamental role in cortical function. A comprehensive understanding of their significance requires integrating perspectives from physics, physiology, and psychology.","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"93 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal-orbitofrontal pathway regulates choices across physical reward and visual novelty 颞眶额通道调节生理奖励和视觉新颖性的选择
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-09 DOI: 10.1016/j.neuron.2025.12.011
Takaya Ogasawara, Kevin Xu, Abraham Z. Snyder, Joel S. Perlmutter, Zhude Tu, Takafumi Minamimoto, Ken-ichi Inoue, Masahiko Takada, Ilya E. Monosov
Expectation of perceptual novelty shapes our daily decisions and has an impact on how we evaluate primary rewards. To identify the underlying circuitry, we trained subjects to choose between offers associated with varying probabilities of receiving large juice rewards and experiencing novel objects. Anticipated novelty modulated valuation by increasing both choice preference for and motivational value of large rewards. This novelty-reward interaction was reflected in a circuit comprising anterior ventral medial temporal cortex (AVMTC), implicated in detecting and predicting novelty, and orbitofrontal cortex (OFC), which receives AVMTC inputs and signals the reward value associated with visual objects. Novelty and reward signals were first detectable in AVMTC. However, OFC neurons' activity more closely reflected subjective preference across the reward-novelty offers in our task. Chemogenetic disruption of AVMTC→OFC altered the impact of expected novelty on reward valuation. These results suggest that the ventral visual system contributes to novelty-reward interactions during valuation through direct projections to prefrontal cortex.
对感知新颖性的预期塑造了我们的日常决策,并对我们如何评估主要奖励产生了影响。为了识别潜在的回路,我们训练受试者在不同可能性的提议中做出选择,这些提议分别是获得大额果汁奖励和体验新奇事物。预期新颖性通过增加大额奖励的选择偏好和激励价值来调节价值。这种新奇与奖励的相互作用反映在一个回路中,该回路包括检测和预测新奇的前腹侧内侧颞叶皮层(AVMTC)和眶额皮质(OFC),后者接收AVMTC输入并发出与视觉物体相关的奖励价值的信号。新奇和奖励信号首先在AVMTC中检测到。然而,OFC神经元的活动更密切地反映了我们任务中奖励-新奇提供的主观偏好。AVMTC→OFC的化学发生中断改变了期望新颖性对奖励评价的影响。这些结果表明,在评估过程中,腹侧视觉系统通过直接投射到前额皮质,促进了新奇-奖励的相互作用。
{"title":"Temporal-orbitofrontal pathway regulates choices across physical reward and visual novelty","authors":"Takaya Ogasawara, Kevin Xu, Abraham Z. Snyder, Joel S. Perlmutter, Zhude Tu, Takafumi Minamimoto, Ken-ichi Inoue, Masahiko Takada, Ilya E. Monosov","doi":"10.1016/j.neuron.2025.12.011","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.011","url":null,"abstract":"Expectation of perceptual novelty shapes our daily decisions and has an impact on how we evaluate primary rewards. To identify the underlying circuitry, we trained subjects to choose between offers associated with varying probabilities of receiving large juice rewards and experiencing novel objects. Anticipated novelty modulated valuation by increasing both choice preference for and motivational value of large rewards. This novelty-reward interaction was reflected in a circuit comprising anterior ventral medial temporal cortex (AVMTC), implicated in detecting and predicting novelty, and orbitofrontal cortex (OFC), which receives AVMTC inputs and signals the reward value associated with visual objects. Novelty and reward signals were first detectable in AVMTC. However, OFC neurons' activity more closely reflected subjective preference across the reward-novelty offers in our task. Chemogenetic disruption of AVMTC→OFC altered the impact of expected novelty on reward valuation. These results suggest that the ventral visual system contributes to novelty-reward interactions during valuation through direct projections to prefrontal cortex.","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"59 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structures of the honeybee GABAA RDL receptor illuminate allosteric modulation 蜜蜂GABAA RDL受体的结构阐明变构调节
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1016/j.neuron.2025.12.013
Tatiana Labouré, Mayank Prakash Pandey, Eleftherios Zarkadas, Céline Juillan-Binard, Delphine Baud, Jacques Neyton, Thierry Cens, Matthieu Rousset, François Dehez, Pierre Charnet, Hugues Nury
{"title":"Structures of the honeybee GABAA RDL receptor illuminate allosteric modulation","authors":"Tatiana Labouré, Mayank Prakash Pandey, Eleftherios Zarkadas, Céline Juillan-Binard, Delphine Baud, Jacques Neyton, Thierry Cens, Matthieu Rousset, François Dehez, Pierre Charnet, Hugues Nury","doi":"10.1016/j.neuron.2025.12.013","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.013","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"95 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potentiation of active locomotor state by spinal-projecting serotonergic neurons 脊髓投射的血清素能神经元对活跃运动状态的增强作用
IF 16.2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1016/j.neuron.2025.12.008
Sara J. Fenstermacher, Ann N. Vonasek, Anne E. Cavanagh, Hannah C. Gattuso, Corryn Chaimowitz, Thomas M. Jessell, Susan M. Dymecki, Jeremy S. Dasen
{"title":"Potentiation of active locomotor state by spinal-projecting serotonergic neurons","authors":"Sara J. Fenstermacher, Ann N. Vonasek, Anne E. Cavanagh, Hannah C. Gattuso, Corryn Chaimowitz, Thomas M. Jessell, Susan M. Dymecki, Jeremy S. Dasen","doi":"10.1016/j.neuron.2025.12.008","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.008","url":null,"abstract":"","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"23 1","pages":""},"PeriodicalIF":16.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural population activity for memory: Properties, computations, and codes. 记忆的神经群体活动:属性、计算和编码。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 Epub Date: 2025-12-22 DOI: 10.1016/j.neuron.2025.11.007
David Dupret, Stefano Fusi, Stefano Panzeri

The brain's memory function involves patterns of neural population spiking activity, shaped by experience and recurring over time. These neural population patterns are typically studied with respect to the three stages of acquisition, retention, and retrieval. Despite intensive investigation, the relationship between the features of population activity and the properties, computations, and codes for memory remains elusive. In this perspective, we synthesize recent advances in the study of memory from the viewpoint of brain network physiology, aiming for a comprehensive mapping between the properties and computations of memory and the features of population-activity codes. We propose that brain memory circuits implement trade-offs between conflicting demands on population codes. We anticipate that an important challenge for both discovery and translational neuroscience of memory is to study these trade-offs, delineating a safe zone in the population-activity space where neuronal circuits operate efficiently.

大脑的记忆功能涉及神经群尖峰活动的模式,这种模式由经验塑造,并随着时间的推移而反复出现。这些神经群体模式的典型研究涉及三个阶段:习得、保留和检索。尽管进行了深入的研究,但种群活动特征与记忆的性质、计算和编码之间的关系仍然难以捉摸。在这方面,我们从脑网络生理学的角度综合了近年来记忆研究的进展,旨在全面映射记忆的性质和计算与人口-活动代码的特征。我们提出,大脑记忆回路在人口编码的冲突需求之间实现了权衡。我们预计,对于记忆的发现和转化神经科学来说,一个重要的挑战是研究这些权衡,在神经元回路有效运作的人口活动空间中划定一个安全区。
{"title":"Neural population activity for memory: Properties, computations, and codes.","authors":"David Dupret, Stefano Fusi, Stefano Panzeri","doi":"10.1016/j.neuron.2025.11.007","DOIUrl":"10.1016/j.neuron.2025.11.007","url":null,"abstract":"<p><p>The brain's memory function involves patterns of neural population spiking activity, shaped by experience and recurring over time. These neural population patterns are typically studied with respect to the three stages of acquisition, retention, and retrieval. Despite intensive investigation, the relationship between the features of population activity and the properties, computations, and codes for memory remains elusive. In this perspective, we synthesize recent advances in the study of memory from the viewpoint of brain network physiology, aiming for a comprehensive mapping between the properties and computations of memory and the features of population-activity codes. We propose that brain memory circuits implement trade-offs between conflicting demands on population codes. We anticipate that an important challenge for both discovery and translational neuroscience of memory is to study these trade-offs, delineating a safe zone in the population-activity space where neuronal circuits operate efficiently.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"390-407"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145820306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond blood pressure: Angiotensin II drives early brain injury. 除了血压:血管紧张素II驱动早期脑损伤。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2026.01.005
Madigan M Reid, Andrew C Yang

The mechanisms linking hypertension to cognitive decline remain unclear. Schaeffer et al. show that angiotensin II damages endothelium, oligodendrocyte precursors, and interneurons via AT1 signaling, independent of blood pressure. Targeting this pathway may protect the brain beyond pressure control alone.1.

高血压与认知能力下降之间的联系机制尚不清楚。Schaeffer等人表明,血管紧张素II通过AT1信号破坏内皮、少突胶质细胞前体和中间神经元,不依赖于血压。针对这一途径可能会保护大脑,而不仅仅是控制压力。
{"title":"Beyond blood pressure: Angiotensin II drives early brain injury.","authors":"Madigan M Reid, Andrew C Yang","doi":"10.1016/j.neuron.2026.01.005","DOIUrl":"https://doi.org/10.1016/j.neuron.2026.01.005","url":null,"abstract":"<p><p>The mechanisms linking hypertension to cognitive decline remain unclear. Schaeffer et al. show that angiotensin II damages endothelium, oligodendrocyte precursors, and interneurons via AT1 signaling, independent of blood pressure. Targeting this pathway may protect the brain beyond pressure control alone.<sup>1</sup>.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"375-377"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial C5aR1 defines a pathogenic inflammatory axis driving cerebral edema. 小胶质细胞C5aR1定义了驱动脑水肿的致病性炎症轴。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.036
Amnah Al-Sayyar, Rejane Rua

Zhou et al.1 identify a C5aR1+ microglial subtype that amplifies neuroinflammation after traumatic brain injury and intracerebral hemorrhage. The mechanism reveals microglial-astrocyte-neutrophil crosstalk driving cerebral edema, highlighting C5aR1 as a therapeutic target and raising new questions about complement-glial interactions.

Zhou等人1发现了一种C5aR1+小胶质细胞亚型,可在创伤性脑损伤和脑出血后放大神经炎症。该机制揭示了小胶质细胞-星形胶质细胞-中性粒细胞串音驱动脑水肿,突出了C5aR1作为治疗靶点,并提出了补体-胶质相互作用的新问题。
{"title":"Microglial C5aR1 defines a pathogenic inflammatory axis driving cerebral edema.","authors":"Amnah Al-Sayyar, Rejane Rua","doi":"10.1016/j.neuron.2025.12.036","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.036","url":null,"abstract":"<p><p>Zhou et al.<sup>1</sup> identify a C5aR1+ microglial subtype that amplifies neuroinflammation after traumatic brain injury and intracerebral hemorrhage. The mechanism reveals microglial-astrocyte-neutrophil crosstalk driving cerebral edema, highlighting C5aR1 as a therapeutic target and raising new questions about complement-glial interactions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"378-380"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thalamic gating of nutrient-specific food consumption. 丘脑控制特定营养物质的食物消耗。
IF 15 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1016/j.neuron.2025.12.046
Xiaoning Liu, Yu Fu

In this issue of Neuron, Zheng et al.1 show how separate neural ensembles in the paraventricular thalamus respond to and gate fat and sugar consumption. Moreover, they revealed the role of histamine receptor 3 in gating fat-specific neural response and consumption.

在本期《神经元》杂志上,郑等人1展示了室旁丘脑中不同的神经系统如何对脂肪和糖的消耗做出反应和控制。此外,他们还揭示了组胺受体3在控制脂肪特异性神经反应和消耗中的作用。
{"title":"Thalamic gating of nutrient-specific food consumption.","authors":"Xiaoning Liu, Yu Fu","doi":"10.1016/j.neuron.2025.12.046","DOIUrl":"https://doi.org/10.1016/j.neuron.2025.12.046","url":null,"abstract":"<p><p>In this issue of Neuron, Zheng et al.<sup>1</sup> show how separate neural ensembles in the paraventricular thalamus respond to and gate fat and sugar consumption. Moreover, they revealed the role of histamine receptor 3 in gating fat-specific neural response and consumption.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":"114 3","pages":"384-386"},"PeriodicalIF":15.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuron
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1