Coefficients of determination measured on the same scale as the outcome: Alternatives to R² that use standard deviations instead of explained variance.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-07-18 DOI:10.1037/met0000681
Mathias Berggren
{"title":"Coefficients of determination measured on the same scale as the outcome: Alternatives to R² that use standard deviations instead of explained variance.","authors":"Mathias Berggren","doi":"10.1037/met0000681","DOIUrl":null,"url":null,"abstract":"<p><p>The coefficient of determination, <i>R</i>², also called the explained variance, is often taken as a proportional measure of the relative determination of model on outcome. However, while <i>R</i>² has some attractive statistical properties, its reliance on squared variations (variances) may limit its use as an easily interpretable descriptive statistic of that determination. Here, the properties of this coefficient on the squared scale are discussed and generalized to three relative measures on the original scale. These generalizations can all be expressed as transformations of <i>R</i>², and alternatives can therefore also be calculated by plugging in related estimates, such as the adjusted <i>R</i>². The third coefficient, new for this article, and here termed the CoD<sub>SD</sub> (the coefficient of determination in terms of standard deviations), or <i>R</i><sub>π</sub> (<i>R</i>-pi), equals <i>R</i>²/(<i>R</i>²+1-<i>R</i>²). It is argued that this coefficient most usefully captures the relative determination of the model. When the contribution of the error is <i>c</i> times that of the model, the CoD<sub>SD</sub> equals 1/(1 + <i>c</i>), while <i>R</i>² equals 1/(1 + <i>c</i>²). (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000681","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The coefficient of determination, R², also called the explained variance, is often taken as a proportional measure of the relative determination of model on outcome. However, while R² has some attractive statistical properties, its reliance on squared variations (variances) may limit its use as an easily interpretable descriptive statistic of that determination. Here, the properties of this coefficient on the squared scale are discussed and generalized to three relative measures on the original scale. These generalizations can all be expressed as transformations of R², and alternatives can therefore also be calculated by plugging in related estimates, such as the adjusted R². The third coefficient, new for this article, and here termed the CoDSD (the coefficient of determination in terms of standard deviations), or Rπ (R-pi), equals R²/(R²+1-R²). It is argued that this coefficient most usefully captures the relative determination of the model. When the contribution of the error is c times that of the model, the CoDSD equals 1/(1 + c), while R² equals 1/(1 + c²). (PsycInfo Database Record (c) 2024 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以与结果相同的尺度衡量的决定系数:R² 的替代品,使用标准差代替解释方差。
判定系数 R²,也称为解释方差,通常被用作衡量模型对结果的相对判定的比例。然而,虽然 R² 具有一些吸引人的统计特性,但它对平方差(方差)的依赖可能会限制其作为一种易于解释的判定系数描述性统计量的使用。在此,我们将讨论该系数在平方标度上的特性,并将其归纳为原始标度上的三个相对测量值。这些概括都可以表示为 R² 的变换,因此也可以通过插入相关估计值(如调整后的 R²)来计算替代系数。第三个系数是本文新增的,在此称为 CoDSD(以标准差表示的判定系数),或 Rπ (R-pi),等于 R²/(R²+1-R²)。有观点认为,该系数能最有效地反映模型的相对确定性。当误差贡献是模型贡献的 c 倍时,CoDSD 等于 1/(1 + c),而 R² 等于 1/(1 + c²)。(PsycInfo Database Record (c) 2024 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
A guided tutorial on linear mixed-effects models for the analysis of accuracies and response times in experiments with fully crossed design. Bayes factors for logistic (mixed-effect) models. Better power by design: Permuted-subblock randomization boosts power in repeated-measures experiments. Building a simpler moderated nonlinear factor analysis model with Markov Chain Monte Carlo estimation. Definition and identification of causal ratio effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1