Enabling Reliable Visual Detection of Chronic Myocardial Infarction with Native T1 Cardiac MRI Using Data-Driven Native Contrast Mapping.

IF 3.8 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiology. Cardiothoracic imaging Pub Date : 2024-08-01 DOI:10.1148/ryct.230338
Khalid Youssef, Xinheng Zhang, Ghazal Yoosefian, Yinyin Chen, Shing Fai Chan, Hsin-Jung Yang, Keyur Vora, Andrew Howarth, Andreas Kumar, Behzad Sharif, Rohan Dharmakumar
{"title":"Enabling Reliable Visual Detection of Chronic Myocardial Infarction with Native T1 Cardiac MRI Using Data-Driven Native Contrast Mapping.","authors":"Khalid Youssef, Xinheng Zhang, Ghazal Yoosefian, Yinyin Chen, Shing Fai Chan, Hsin-Jung Yang, Keyur Vora, Andrew Howarth, Andreas Kumar, Behzad Sharif, Rohan Dharmakumar","doi":"10.1148/ryct.230338","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To investigate whether infarct-to-remote myocardial contrast can be optimized by replacing generic fitting algorithms used to obtain native T1 maps with a data-driven machine learning pixel-wise approach in chronic reperfused infarct in a canine model. Materials and Methods A controlled large animal model (24 canines, equal male and female animals) of chronic myocardial infarction with histologic evidence of heterogeneous infarct tissue composition was studied. Unsupervised clustering techniques using self-organizing maps and <i>t</i>-distributed stochastic neighbor embedding were used to analyze and visualize native T1-weighted pixel-intensity patterns. Deep neural network models were trained to map pixel-intensity patterns from native T1-weighted image series to corresponding pixels on late gadolinium enhancement (LGE) images, yielding visually enhanced noncontrast maps, a process referred to as <i>data-driven native mapping</i> (DNM). Pearson correlation coefficients and Bland-Altman analyses were used to compare findings from the DNM approach against standard T1 maps. Results Native T1-weighted images exhibited distinct pixel-intensity patterns between infarcted and remote territories. Granular pattern visualization revealed higher infarct-to-remote cluster separability with LGE labeling as compared with native T1 maps. Apparent contrast-to-noise ratio from DNM (mean, 15.01 ± 2.88 [SD]) was significantly different from native T1 maps (5.64 ± 1.58; <i>P</i> < .001) but similar to LGE contrast-to-noise ratio (15.51 ± 2.43; <i>P</i> = .40). Infarcted areas based on LGE were more strongly correlated with DNM compared with native T1 maps (<i>R</i><sup>2</sup> = 0.71 for native T1 maps vs LGE; <i>R</i><sup>2</sup> = 0.85 for DNM vs LGE; <i>P</i> < .001). Conclusion Native T1-weighted pixels carry information that can be extracted with the proposed DNM approach to maximize image contrast between infarct and remote territories for enhanced visualization of chronic infarct territories. <b>Keywords:</b> Chronic Myocardial Infarction, Cardiac MRI, Data-Driven Native Contrast Mapping <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":21168,"journal":{"name":"Radiology. Cardiothoracic imaging","volume":"6 4","pages":"e230338"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Cardiothoracic imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryct.230338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To investigate whether infarct-to-remote myocardial contrast can be optimized by replacing generic fitting algorithms used to obtain native T1 maps with a data-driven machine learning pixel-wise approach in chronic reperfused infarct in a canine model. Materials and Methods A controlled large animal model (24 canines, equal male and female animals) of chronic myocardial infarction with histologic evidence of heterogeneous infarct tissue composition was studied. Unsupervised clustering techniques using self-organizing maps and t-distributed stochastic neighbor embedding were used to analyze and visualize native T1-weighted pixel-intensity patterns. Deep neural network models were trained to map pixel-intensity patterns from native T1-weighted image series to corresponding pixels on late gadolinium enhancement (LGE) images, yielding visually enhanced noncontrast maps, a process referred to as data-driven native mapping (DNM). Pearson correlation coefficients and Bland-Altman analyses were used to compare findings from the DNM approach against standard T1 maps. Results Native T1-weighted images exhibited distinct pixel-intensity patterns between infarcted and remote territories. Granular pattern visualization revealed higher infarct-to-remote cluster separability with LGE labeling as compared with native T1 maps. Apparent contrast-to-noise ratio from DNM (mean, 15.01 ± 2.88 [SD]) was significantly different from native T1 maps (5.64 ± 1.58; P < .001) but similar to LGE contrast-to-noise ratio (15.51 ± 2.43; P = .40). Infarcted areas based on LGE were more strongly correlated with DNM compared with native T1 maps (R2 = 0.71 for native T1 maps vs LGE; R2 = 0.85 for DNM vs LGE; P < .001). Conclusion Native T1-weighted pixels carry information that can be extracted with the proposed DNM approach to maximize image contrast between infarct and remote territories for enhanced visualization of chronic infarct territories. Keywords: Chronic Myocardial Infarction, Cardiac MRI, Data-Driven Native Contrast Mapping Supplemental material is available for this article. © RSNA, 2024.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据驱动的原位对比度映射,通过原位 T1 心脏 MRI 对慢性心肌梗死进行可靠的视觉检测。
目的 研究在犬模型的慢性再灌注心肌梗死中,用数据驱动的机器学习像素法取代用于获得原始 T1 图的通用拟合算法,是否能优化梗死与远端心肌的对比度。材料与方法 研究了一种慢性心肌梗死的对照大型动物模型(24 只犬科动物,雌雄各半),其组织学证据表明梗死组织的组成不均匀。使用自组织图和 t 分布随机邻域嵌入的无监督聚类技术来分析和可视化原生 T1 加权像素强度模式。对深度神经网络模型进行了训练,以便将原生 T1 加权图像系列中的像素强度模式映射到晚期钆增强(LGE)图像上的相应像素上,从而生成视觉增强的非对比度映射图,这一过程被称为数据驱动的原生映射(DNM)。采用皮尔逊相关系数和布兰-阿尔特曼分析法将 DNM 方法的结果与标准 T1 地图进行比较。结果 原位 T1 加权图像在梗死区和偏远区之间显示出不同的像素强度模式。颗粒模式可视化显示,与原始 T1 图相比,LGE 标记的梗死区与偏远区的分离度更高。DNM 的表观对比噪声比(平均值为 15.01 ± 2.88 [标度])与原始 T1 地图(5.64 ± 1.58;P < .001)有显著差异,但与 LGE 对比噪声比(15.51 ± 2.43;P = .40)相似。与原始 T1 地图相比,基于 LGE 的梗死区域与 DNM 的相关性更强(原始 T1 地图与 LGE 相比,R2 = 0.71;DNM 与 LGE 相比,R2 = 0.85;P < .001)。结论 原位 T1 加权像素所携带的信息可通过建议的 DNM 方法提取出来,从而最大限度地提高梗死区和远端区域的图像对比度,增强慢性梗死区的可视化。关键词慢性心肌梗死 心脏 MRI 数据驱动的原位对比度映射 本文有补充材料。© RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
1.40%
发文量
0
期刊介绍:
期刊最新文献
Incremental Prognostic Value of Perivascular Fat Attenuation Index in Patients with Diabetes with Coronary Artery Disease. Multimodality Imaging for the Diagnosis and Evaluation of Pulmonary Sarcoidosis. Coronary Artery Calcium Detection with Dual-Energy Posteroanterior and Lateral Chest Radiography: Imaging Clues and Added Value of the Lateral View. Denoised Ultra-Low-Dose Chest CT to Assess Pneumonia in Individuals Who Are Immunocompromised. Pleuroparenchymal Fibroelastosis: Update on CT and Histologic Findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1