Understanding Species Boundaries that Arise from Complex Histories: Gene Flow Across the Speciation Continuum in the Spotted Whiptail Lizards.

IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Systematic Biology Pub Date : 2024-07-18 DOI:10.1093/sysbio/syae040
Anthony J Barley, Adrián Nieto-Montes de Oca, Norma L Manríquez-Morán, Robert C Thomson
{"title":"Understanding Species Boundaries that Arise from Complex Histories: Gene Flow Across the Speciation Continuum in the Spotted Whiptail Lizards.","authors":"Anthony J Barley, Adrián Nieto-Montes de Oca, Norma L Manríquez-Morán, Robert C Thomson","doi":"10.1093/sysbio/syae040","DOIUrl":null,"url":null,"abstract":"<p><p>Gene flow between diverging lineages challenges the resolution of species boundaries and the understanding of evolutionary history in recent radiations. Here, we integrate phylogenetic and coalescent tools to resolve reticulate patterns of diversification and use a perspective focused on evolutionary mechanisms to distinguish interspecific and intraspecific taxonomic variation. We use this approach to resolve the systematics for one of the most intensively studied but difficult to understand groups of reptiles: the spotted whiptail lizards of the genus Aspidoscelis (A. gularis complex). Whiptails contain the largest number of unisexual species known within any vertebrate group and the spotted whiptail complex has played a key role in the generation of this diversity through hybrid speciation. Understanding lineage boundaries and the evolutionary history of divergence and reticulation within this group is therefore key to understanding the generation of unisexual diversity in whiptails. Despite this importance, long-standing confusion about their systematics has impeded understanding of which gonochoristic species have contributed to the formation of unisexual lineages. Using reduced representation genomic data, we resolve patterns of divergence and gene flow within the spotted whiptails and clarify patterns of hybrid speciation. We find evidence that biogeographically structured ecological and environmental variation has been important in morphological and genetic diversification, as well as the maintenance of species boundaries in this system. Our study elucidates how gene flow among lineages and the continuous nature of speciation can bias the practice of species delimitation and lead taxonomists operating under different frameworks to different conclusions (here we propose that a two species arrangement best reflects our current understanding). In doing so, this study provides conceptual and methodological insights into approaches to resolving diversification patterns and species boundaries in rapid radiations with complex histories, as well as long-standing taxonomic challenges in the field of systematic biology.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae040","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene flow between diverging lineages challenges the resolution of species boundaries and the understanding of evolutionary history in recent radiations. Here, we integrate phylogenetic and coalescent tools to resolve reticulate patterns of diversification and use a perspective focused on evolutionary mechanisms to distinguish interspecific and intraspecific taxonomic variation. We use this approach to resolve the systematics for one of the most intensively studied but difficult to understand groups of reptiles: the spotted whiptail lizards of the genus Aspidoscelis (A. gularis complex). Whiptails contain the largest number of unisexual species known within any vertebrate group and the spotted whiptail complex has played a key role in the generation of this diversity through hybrid speciation. Understanding lineage boundaries and the evolutionary history of divergence and reticulation within this group is therefore key to understanding the generation of unisexual diversity in whiptails. Despite this importance, long-standing confusion about their systematics has impeded understanding of which gonochoristic species have contributed to the formation of unisexual lineages. Using reduced representation genomic data, we resolve patterns of divergence and gene flow within the spotted whiptails and clarify patterns of hybrid speciation. We find evidence that biogeographically structured ecological and environmental variation has been important in morphological and genetic diversification, as well as the maintenance of species boundaries in this system. Our study elucidates how gene flow among lineages and the continuous nature of speciation can bias the practice of species delimitation and lead taxonomists operating under different frameworks to different conclusions (here we propose that a two species arrangement best reflects our current understanding). In doing so, this study provides conceptual and methodological insights into approaches to resolving diversification patterns and species boundaries in rapid radiations with complex histories, as well as long-standing taxonomic challenges in the field of systematic biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解复杂历史中产生的物种边界:斑点鞭尾蜥物种连续性中的基因流。
分化世系之间的基因流动对物种边界的解析和对近期辐射进化史的理解提出了挑战。在这里,我们整合了系统发育和凝聚工具来解析网状的多样化模式,并从进化机制的角度来区分种间和种内的分类变异。我们使用这种方法来解决研究最深入但难以理解的爬行类群之一的系统学问题:斑鞭尾蜥属(A. gularis complex)。在所有脊椎动物类群中,鞭尾蜥是已知单性物种数量最多的,斑鞭尾蜥复合体在通过杂交物种产生多样性方面发挥了关键作用。因此,了解该类群的世系界限以及分化和网状化的进化历史,是了解鞭尾类单性多样性产生的关键。尽管这一点很重要,但长期以来对其系统学的混淆妨碍了人们了解哪些性腺物种促成了单性世系的形成。我们利用还原表征基因组数据,解析了斑点鞭尾蜥内部的分化和基因流动模式,并澄清了杂交物种的模式。我们发现有证据表明,生物地理结构上的生态和环境变异对形态和遗传多样化以及该系统中物种边界的维持非常重要。我们的研究阐明了种系之间的基因流动和物种演化的连续性如何使物种划分的实践产生偏差,并导致在不同框架下工作的分类学家得出不同的结论(在此,我们提出两个物种的安排最能反映我们目前的认识)。因此,本研究为解决历史复杂的快速辐射中的多样化模式和物种边界问题,以及系统生物学领域长期存在的分类学挑战提供了概念和方法上的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systematic Biology
Systematic Biology 生物-进化生物学
CiteScore
13.00
自引率
7.70%
发文量
70
审稿时长
6-12 weeks
期刊介绍: Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.
期刊最新文献
A Double-edged Sword: Evolutionary Novelty along Deep-time Diversity Oscillation in An Iconic Group of Predatory Insects (Neuroptera: Mantispoidea) Are Modern Cryptic Species Detectable in the Fossil Record? A Case Study on Agamid Lizards. Bayesian Selection of Relaxed-clock Models: Distinguishing Between Independent and Autocorrelated Rates. Testing relationships between multiple regional features and biogeographic processes of speciation, extinction, and dispersal Robustness of Divergence Time Estimation Despite Gene Tree Estimation Error: A Case Study of Fireflies (Coleoptera: Lampyridae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1