Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation

IF 26.1 1区 计算机科学 Q1 ROBOTICS Science Robotics Pub Date : 2024-07-17 DOI:10.1126/scirobotics.adl0307
Tianyu Chen, Xudong Yang, Bojian Zhang, Junwei Li, Jie Pan, Yifan Wang
{"title":"Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation","authors":"Tianyu Chen,&nbsp;Xudong Yang,&nbsp;Bojian Zhang,&nbsp;Junwei Li,&nbsp;Jie Pan,&nbsp;Yifan Wang","doi":"10.1126/scirobotics.adl0307","DOIUrl":null,"url":null,"abstract":"<div >Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task. Here, inspired by the scales that cover creatures like pangolins and fish, we developed a robotic structure that can vary its stiffness and change shape simultaneously in a highly integrated, compact body. The scale-inspired layered structure (SAILS) was enabled by the inversely designed programmable surface patterns of the scales. After fabrication, SAILS was inherently soft and flexible. When sealed in an elastic envelope and subjected to negative confining pressure, it transitioned to its designated shape and concurrently became stiff. SAILS could be actuated at frequencies as high as 5 hertz and achieved an apparent bending modulus change of up to 53 times between its soft and stiff states. We further demonstrated both the versatility of SAILS by developing a soft robot that is amphibious and adaptive and tunable landing systems for drones with the capacity to accommodate different loads.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adl0307","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task. Here, inspired by the scales that cover creatures like pangolins and fish, we developed a robotic structure that can vary its stiffness and change shape simultaneously in a highly integrated, compact body. The scale-inspired layered structure (SAILS) was enabled by the inversely designed programmable surface patterns of the scales. After fabrication, SAILS was inherently soft and flexible. When sealed in an elastic envelope and subjected to negative confining pressure, it transitioned to its designated shape and concurrently became stiff. SAILS could be actuated at frequencies as high as 5 hertz and achieved an apparent bending modulus change of up to 53 times between its soft and stiff states. We further demonstrated both the versatility of SAILS by developing a soft robot that is amphibious and adaptive and tunable landing systems for drones with the capacity to accommodate different loads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时具有形状变形和刚度变化的规模启发式可编程机器人结构。
生物有机体通常通过复杂的结构具有显著的多功能性,例如章鱼同时具有形状变形和硬度变化的功能。受自然生物启发的软体机器人通常需要整合不同的模块来实现这些不同的功能。因此,整体结构复杂,控制系统复杂,往往需要多个控制回路才能完成所需的任务。在此,我们从覆盖在穿山甲和鱼类等生物身上的鳞片中汲取灵感,开发出一种机器人结构,它可以在高度集成的紧凑机体中同时改变硬度和形状。这种受鳞片启发的分层结构(SAILS)由鳞片的可编程表面图案反向设计实现。制作完成后,SAILS 本身就柔软而富有弹性。当将其密封在弹性封套中并承受负压时,它就会转变为指定的形状,同时变得坚硬。SAILS 可在高达 5 赫兹的频率下驱动,在软态和硬态之间的表观弯曲模量变化高达 53 倍。我们还开发了一种两栖软体机器人,进一步证明了 SAILS 的多功能性,并为无人机开发了可适应不同负载的自适应可调着陆系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
期刊最新文献
A twist of the tail in turning maneuvers of bird-inspired drones Bird-inspired reflexive morphing enables rudderless flight Cybernetic avatars: Teleoperation technologies from in-body monitoring to social interaction. Robots and animals teaming up in the wild to tackle ecosystem challenges. NeuralFeels with neural fields: Visuotactile perception for in-hand manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1