Niloofar Aldaghi, Mohammad Kamalabadi-Farahani, Morteza Alizadeh, Majid Salehi
{"title":"Doxycycline-loaded carboxymethyl cellulose/sodium alginate/gelatin hydrogel: An approach for enhancing pressure ulcer healing in a rat model","authors":"Niloofar Aldaghi, Mohammad Kamalabadi-Farahani, Morteza Alizadeh, Majid Salehi","doi":"10.1002/jbm.a.37778","DOIUrl":null,"url":null,"abstract":"<p>Pressure ulcers, or bedsores, are created by areas of the skin under prolonged pressure and can lead to skin and underlying tissue damage. The present study evaluated the effects of carboxymethyl cellulose/sodium alginate/gelatin (CMC/Alg/Gel) hydrogel containing doxycycline (DOX) on improving the healing process of pressure ulcers. The magnet was used to apply pressure on the dorsum skin rat to induce a pressure ulcer model. Then sterile gauze, CMC/Alg/Gel, and CMC/Alg/Gel/1% w/v DOX hydrogels were used to cover the wounds. Blood compatibility, weight loss, cytocompatibility, drug release rate, cell viability, wound closure, and re-epithelialization were evaluated in all animals on the 14th day after treatment. In vivo results and histopathological evaluation showed 56.66% wound closure and the highest re-epithelialization in the CMC/Alg/Gel/1% w/v DOX hydrogel group (14 days after treatment). Furthermore, real-time PCR results indicated that the hydrogel containing DOX significantly decreased the expression of the <i>MMP</i> family consisting of <i>MMP2</i> and <i>MMP9</i> mRNA and also increased the expression of vascular endothelial growth factor <i>VEGF</i> mRNA. This study suggested that the addition of DOX, an antibiotic and <i>MMP</i> inhibitor, to hydrogels may be effective in the healing process of pressure ulcers.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 12","pages":"2289-2300"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37778","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pressure ulcers, or bedsores, are created by areas of the skin under prolonged pressure and can lead to skin and underlying tissue damage. The present study evaluated the effects of carboxymethyl cellulose/sodium alginate/gelatin (CMC/Alg/Gel) hydrogel containing doxycycline (DOX) on improving the healing process of pressure ulcers. The magnet was used to apply pressure on the dorsum skin rat to induce a pressure ulcer model. Then sterile gauze, CMC/Alg/Gel, and CMC/Alg/Gel/1% w/v DOX hydrogels were used to cover the wounds. Blood compatibility, weight loss, cytocompatibility, drug release rate, cell viability, wound closure, and re-epithelialization were evaluated in all animals on the 14th day after treatment. In vivo results and histopathological evaluation showed 56.66% wound closure and the highest re-epithelialization in the CMC/Alg/Gel/1% w/v DOX hydrogel group (14 days after treatment). Furthermore, real-time PCR results indicated that the hydrogel containing DOX significantly decreased the expression of the MMP family consisting of MMP2 and MMP9 mRNA and also increased the expression of vascular endothelial growth factor VEGF mRNA. This study suggested that the addition of DOX, an antibiotic and MMP inhibitor, to hydrogels may be effective in the healing process of pressure ulcers.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.