Gabriela Gomes Guimarães, Fernanda Alves, Isabella Gonçalves, Iago Silva e Carvalho, Erika Toneth Ponce Ayala, Sebastião Pratavieira, Vanderlei Salvador Bagnato
{"title":"The synergistic effect of photodynamic and sonodynamic inactivation against Candida albicans biofilm","authors":"Gabriela Gomes Guimarães, Fernanda Alves, Isabella Gonçalves, Iago Silva e Carvalho, Erika Toneth Ponce Ayala, Sebastião Pratavieira, Vanderlei Salvador Bagnato","doi":"10.1002/jbio.202400190","DOIUrl":null,"url":null,"abstract":"<p><i>Candida albicans</i> biofilm can cause diseases that are resistant to conventional antifungal agents. Photodynamic (PDI), sonodynamic (SDI), and sonophotodynamic (SPDI) inactivation have arisen as promising antimicrobial strategies. This study evaluated these treatments mediated by curcumin against <i>C. albicans</i> biofilms. For this, <i>C. albicans</i> biofilms were submitted to PDI, SDI, or SPDI with different light and ultrasound doses, then, the viability assay was performed to measure the effectiveness. Finally, a mathematical model was suggested to fit acquired experimental data and understand the synergistic effect of light and ultrasound in different conditions. The results showed that SPDI, PDI, and SDI reduced the viability in 6 ± 1; 1 ± 1; and 2 ± 1 log, respectively, using light at 60 J/cm<sup>2</sup>, ultrasound at 3 W/cm<sup>2</sup>, and 80 μM of curcumin. The viability reduction was proportional to the ultrasound and light doses delivered. These results encourage the use of SPDI for the control of microbial biofilm.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400190","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Candida albicans biofilm can cause diseases that are resistant to conventional antifungal agents. Photodynamic (PDI), sonodynamic (SDI), and sonophotodynamic (SPDI) inactivation have arisen as promising antimicrobial strategies. This study evaluated these treatments mediated by curcumin against C. albicans biofilms. For this, C. albicans biofilms were submitted to PDI, SDI, or SPDI with different light and ultrasound doses, then, the viability assay was performed to measure the effectiveness. Finally, a mathematical model was suggested to fit acquired experimental data and understand the synergistic effect of light and ultrasound in different conditions. The results showed that SPDI, PDI, and SDI reduced the viability in 6 ± 1; 1 ± 1; and 2 ± 1 log, respectively, using light at 60 J/cm2, ultrasound at 3 W/cm2, and 80 μM of curcumin. The viability reduction was proportional to the ultrasound and light doses delivered. These results encourage the use of SPDI for the control of microbial biofilm.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.