Enhancing the coating durability and electrical stability of fiber composites with SPEEK/PEDOT:PSS permanent coatings: A novel approach

IF 6.3 2区 化学 Q1 POLYMER SCIENCE Polymer Degradation and Stability Pub Date : 2024-07-04 DOI:10.1016/j.polymdegradstab.2024.110908
{"title":"Enhancing the coating durability and electrical stability of fiber composites with SPEEK/PEDOT:PSS permanent coatings: A novel approach","authors":"","doi":"10.1016/j.polymdegradstab.2024.110908","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses for the first time on the investigation of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) permanent coatings on composite surfaces to enhance the electrical and surface properties of fiber-reinforced composite materials, particularly those commonly used in the aerospace sector, such as Kevlar® (aramid), carbon (C), and glass fiber-reinforced composites. One significant challenge encountered is the weak adhesion property between PEDOT:PSS and the composite surface, which poses some difficulties in coating durability in harsh environmental conditions. The resulting material comprises a three-component structure, consisting of composite surface modifications, PEDOT:PSS coating, and sulfonated poly(ether ketone) (SPEEK) primer. To address the primary issues of adhesion, delamination, stability, and electrical conductivity, this study adopts a novel approach to improve the permanence of PEDOT:PSS coatings on composite surfaces by utilizing a SPEEK primer under ultraviolet (UV) light exposure, deionized (DI) water, saltwater, and acidic environments. Tape-peeling and cross-cut adhesion tape tests were employed to evaluate the coating durability, while optical microscopic observations, water contact angle (WCA), and Fourier-transform infrared (FTIR) spectroscopy analyses assess physical, chemical, and physicochemical property changes. Test results indicated that the SPEEK/PEDOT:PSS-coated composite surfaces exhibited enhanced electrical conductivity, stability, and permanent adhesion properties. Overall, this study contributes to the development of next-generation materials for various industries (aviation, defense, energy, and manufacturing) by offering a promising solution to improve electrical, adhesion, and other surface properties in composite materials.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024002520","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses for the first time on the investigation of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) permanent coatings on composite surfaces to enhance the electrical and surface properties of fiber-reinforced composite materials, particularly those commonly used in the aerospace sector, such as Kevlar® (aramid), carbon (C), and glass fiber-reinforced composites. One significant challenge encountered is the weak adhesion property between PEDOT:PSS and the composite surface, which poses some difficulties in coating durability in harsh environmental conditions. The resulting material comprises a three-component structure, consisting of composite surface modifications, PEDOT:PSS coating, and sulfonated poly(ether ketone) (SPEEK) primer. To address the primary issues of adhesion, delamination, stability, and electrical conductivity, this study adopts a novel approach to improve the permanence of PEDOT:PSS coatings on composite surfaces by utilizing a SPEEK primer under ultraviolet (UV) light exposure, deionized (DI) water, saltwater, and acidic environments. Tape-peeling and cross-cut adhesion tape tests were employed to evaluate the coating durability, while optical microscopic observations, water contact angle (WCA), and Fourier-transform infrared (FTIR) spectroscopy analyses assess physical, chemical, and physicochemical property changes. Test results indicated that the SPEEK/PEDOT:PSS-coated composite surfaces exhibited enhanced electrical conductivity, stability, and permanent adhesion properties. Overall, this study contributes to the development of next-generation materials for various industries (aviation, defense, energy, and manufacturing) by offering a promising solution to improve electrical, adhesion, and other surface properties in composite materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 SPEEK/PEDOT:PSS 永久涂层提高纤维复合材料的涂层耐久性和电气稳定性:一种新方法
本研究首次重点研究了复合材料表面的聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)永久涂层,以提高纤维增强复合材料的电气性能和表面性能,尤其是航空航天领域常用的纤维增强复合材料,如凯夫拉®(芳纶)、碳纤维(C)和玻璃纤维增强复合材料。所遇到的一个重大挑战是 PEDOT:PSS 与复合材料表面之间的附着力较弱,这给涂层在恶劣环境条件下的耐久性带来了一些困难。因此,我们开发了一种由三部分组成的材料,包括复合材料表面改性、PEDOT:PSS 涂层和磺化聚醚酮 (SPEEK) 底漆。为了解决附着力、分层、稳定性和导电性等主要问题,本研究采用了一种新方法,通过在紫外线(UV)照射、去离子水(DI)、盐水和酸性环境下使用 SPEEK 底漆来提高 PEDOT:PSS 涂层在复合材料表面的持久性。采用胶带剥离和横切附着胶带试验来评估涂层的耐久性,而光学显微镜观察、水接触角(WCA)和傅立叶变换红外光谱(FTIR)分析则评估物理、化学和理化性质的变化。测试结果表明,SPEEK/PEDOT:PSS 涂层复合材料表面具有更强的导电性、稳定性和永久粘附性。总之,这项研究为各行各业(航空、国防、能源和制造业)开发下一代材料提供了一种很有前景的解决方案,可改善复合材料的导电性、附着力和其他表面特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
期刊最新文献
Flammability degradation behavior and ageing mechanism of flame-retardant cable sheath under different ageing conditions Oxygen-induced surface hardening and aromatization of thermoset furanic biobased resin: Origin and consequences Development of flame retardant coatings containing hexaphenoxycyclotriphosphazene and expandable graphite for carbon fibre-reinforced polyamide 6 composites Arc-shaped air layer bioinspired by ginkgo nut to resist high humidity environment for PET fabrics Flame-retardants for polypropylene: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1