Yinjie Zhu , Jian Ding , Xiaoxiong Wang , Xuejian Wang , Huansheng Cao , Fei Teng , Shishi Yao , Zhiru Lin , Yuelu Jiang , Yi Tao
{"title":"Optimizing UVA and UVC synergy for effective control of harmful cyanobacterial blooms","authors":"Yinjie Zhu , Jian Ding , Xiaoxiong Wang , Xuejian Wang , Huansheng Cao , Fei Teng , Shishi Yao , Zhiru Lin , Yuelu Jiang , Yi Tao","doi":"10.1016/j.ese.2024.100455","DOIUrl":null,"url":null,"abstract":"<div><p>Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of <em>Microcystis aeruginosa</em> using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm<sup>−2</sup>) combined with UVC (0.085 J cm<sup>−2</sup>) reduces 85% more cell densities compared to UVC alone (0.085 J cm<sup>−2</sup>) and triggers <em>mazEF</em>-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm<sup>−2</sup>) increase cell densities by 75–155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100455"},"PeriodicalIF":14.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000693/pdfft?md5=dcee3137670050ef4cf43b9ad6fcd2eb&pid=1-s2.0-S2666498424000693-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000693","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of Microcystis aeruginosa using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm−2) combined with UVC (0.085 J cm−2) reduces 85% more cell densities compared to UVC alone (0.085 J cm−2) and triggers mazEF-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm−2) increase cell densities by 75–155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.