Numerical investigation on the amplitude and mechanics of internal solitary waves generated by the gravity collapse method

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Applied Ocean Research Pub Date : 2024-07-17 DOI:10.1016/j.apor.2024.104127
{"title":"Numerical investigation on the amplitude and mechanics of internal solitary waves generated by the gravity collapse method","authors":"","doi":"10.1016/j.apor.2024.104127","DOIUrl":null,"url":null,"abstract":"<div><p>The gravity collapse method is a commonly used approach to generate internal solitary waves (ISWs) in experimental or numerical tanks. Presently, the correlation between the wave-making parameters and the amplitude of the ISW produced via this approach is not well understood. The research presents a suggested amplitude expression that is derived from direct numerical simulations, dimensional analysis, and restricted linear regression. To our best knowledge, the expression is first presented in this paper and can be utilized as a useful tool to produce ISW with a specific amplitude. While the formula is often effective in predicting the ISW amplitude, it exhibits a slight inaccuracy in situations where the initial level difference is small and the collapse region is long. This is because the initial potential energy of the collapse region is not fully transformed into ISW energy. Furthermore, this research illustrates the mechanics of the collapse process and concludes that the near-bed horizontal velocities and transport properties induced by large-amplitude ISWs are inherent characteristics rather than being caused by the unstable process of wave generation.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724002487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

The gravity collapse method is a commonly used approach to generate internal solitary waves (ISWs) in experimental or numerical tanks. Presently, the correlation between the wave-making parameters and the amplitude of the ISW produced via this approach is not well understood. The research presents a suggested amplitude expression that is derived from direct numerical simulations, dimensional analysis, and restricted linear regression. To our best knowledge, the expression is first presented in this paper and can be utilized as a useful tool to produce ISW with a specific amplitude. While the formula is often effective in predicting the ISW amplitude, it exhibits a slight inaccuracy in situations where the initial level difference is small and the collapse region is long. This is because the initial potential energy of the collapse region is not fully transformed into ISW energy. Furthermore, this research illustrates the mechanics of the collapse process and concludes that the near-bed horizontal velocities and transport properties induced by large-amplitude ISWs are inherent characteristics rather than being caused by the unstable process of wave generation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重力塌缩法产生的内孤波的振幅和力学数值研究
重力塌陷法是在实验或数值水槽中产生内孤波(ISW)的常用方法。目前,通过这种方法产生的内孤波的造波参数和振幅之间的相关性还不十分清楚。这项研究提出了一个建议的振幅表达式,它是通过直接数值模拟、尺寸分析和限制性线性回归得出的。据我们所知,该表达式是本文首次提出的,可用作产生具有特定振幅的 ISW 的有用工具。虽然该公式通常能有效预测 ISW 振幅,但在初始水平差较小且坍塌区域较长的情况下,该公式会表现出轻微的不准确性。这是因为坍塌区域的初始势能没有完全转化为 ISW 能量。此外,这项研究还说明了塌陷过程的力学原理,并得出结论认为,大振幅 ISW 引发的近床水平速度和输运特性是固有特征,而不是波浪产生的不稳定过程造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
期刊最新文献
Experimental study on the stabilization of marine soft clay as subgrade filler using binary blending of calcium carbide residue and fly ash Evaluation of dynamic behaviour of pipe-in-pipe systems for deepwater J-lay method A novel large stroke, heavy duty, high response (2P(nR)+PPR)P actuator mechanism for parallel wave motion simulator platform Suppressing submerged vortices in a closed pump sump: A novel approach using joint anti-vortex devices Development and verification of real-time hybrid model test delay compensation method for monopile-type offshore wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1