Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2024-07-17 DOI:10.1016/j.mser.2024.100826
Naini Jain , Deepak Kumar , Kirti Bhardwaj , Rupendra K. Sharma , Jakub Holovsky , Meena Mishra , Yogendra Kumar Mishra , Sanjeev Kumar Sharma
{"title":"Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors","authors":"Naini Jain ,&nbsp;Deepak Kumar ,&nbsp;Kirti Bhardwaj ,&nbsp;Rupendra K. Sharma ,&nbsp;Jakub Holovsky ,&nbsp;Meena Mishra ,&nbsp;Yogendra Kumar Mishra ,&nbsp;Sanjeev Kumar Sharma","doi":"10.1016/j.mser.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrafast UV photodetectors (UV PDs) are crucial components in modern optoelectronics because conventional detectors have reached a bottleneck with low integration, functionalities, and efficiency. Core-shell metal oxide nanobrushes (MOx NBs)-based UV PDs have enhanced the absorption, tunable performance, and good compatibility for diversified applications, including imaging, self-powered systems, remote communications, security, and wearable electronics. Core-shell PDs are developed with complex hierarchical or heterostructured configurations that encapsulate 1D MOx nanowires on 1D nanostructures (NSs) to transport high charge carrier mobility or efficiency by reducing scattering and recombination rates. This review presents a thorough development of MOx core-shell microstructure for the enhancement of detection response and stability with controlled parameters for multifunctional applications. Significant roles of MOx NBs-based UV PDs exploring various growth techniques and complex photodetection mechanisms with their challenges, limitations, and prospects, providing valuable insights for propelling the progression of photodetector technology in this comprehensive review are discussed meticulously. The novelty of MOx NBs-based UV PDs lies in their distinctive brush-like morphology aspect, tunable properties, and improved performance compared to other NSs, for rapid and sensitive response ( ̴µs-ms) under UV light illumination. The diverse photoresponse parameters and multifunctional applications of UV PDs incorporating MOx NBs are carefully summarized, which will set the roadmap for future photodetector technology.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100826"},"PeriodicalIF":31.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927796X24000561/pdfft?md5=35c0d170afaa825c33cda1b4d2969041&pid=1-s2.0-S0927796X24000561-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000561","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast UV photodetectors (UV PDs) are crucial components in modern optoelectronics because conventional detectors have reached a bottleneck with low integration, functionalities, and efficiency. Core-shell metal oxide nanobrushes (MOx NBs)-based UV PDs have enhanced the absorption, tunable performance, and good compatibility for diversified applications, including imaging, self-powered systems, remote communications, security, and wearable electronics. Core-shell PDs are developed with complex hierarchical or heterostructured configurations that encapsulate 1D MOx nanowires on 1D nanostructures (NSs) to transport high charge carrier mobility or efficiency by reducing scattering and recombination rates. This review presents a thorough development of MOx core-shell microstructure for the enhancement of detection response and stability with controlled parameters for multifunctional applications. Significant roles of MOx NBs-based UV PDs exploring various growth techniques and complex photodetection mechanisms with their challenges, limitations, and prospects, providing valuable insights for propelling the progression of photodetector technology in this comprehensive review are discussed meticulously. The novelty of MOx NBs-based UV PDs lies in their distinctive brush-like morphology aspect, tunable properties, and improved performance compared to other NSs, for rapid and sensitive response ( ̴µs-ms) under UV light illumination. The diverse photoresponse parameters and multifunctional applications of UV PDs incorporating MOx NBs are carefully summarized, which will set the roadmap for future photodetector technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超快紫外光检测器的基于核壳金属氧化物的异质结构纳米刷子
超快紫外光检测器(UV PDs)是现代光电子学中的关键元件,因为传统的检测器在集成度、功能和效率方面已经达到了一个瓶颈。基于核壳金属氧化物纳米碎屑(MOx NBs)的紫外光光电探测器具有更强的吸收能力、可调性能和良好的兼容性,可用于成像、自供电系统、远程通信、安全和可穿戴电子设备等多种应用。核壳型紫外光分光器件采用复杂的分层或异质结构配置,将一维 MOx 纳米线封装在一维纳米结构(NSs)上,通过降低散射和重组率来传输高电荷载流子迁移率或效率。本综述全面介绍了 MOx 核壳微结构的发展情况,通过控制多功能应用的参数来提高检测响应和稳定性。本综述详细讨论了基于 MOx NBs 的紫外线光致发光器件的重要作用,探索了各种生长技术和复杂的光检测机制及其挑战、局限性和前景,为推动光电探测器技术的发展提供了宝贵的见解。基于 MOx NBs 的紫外光光致发光器件的新颖之处在于其独特的刷状形貌、可调特性以及与其他 NS 相比更高的性能,可在紫外光照射下做出快速灵敏的响应(̴µs-ms)。本文仔细总结了含有 MOx NB 的紫外线光致发光器件的各种光响应参数和多功能应用,为未来的光电探测器技术绘制了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Graphdiyne-based molecular active materials and devices for emerging smart applications Exploring Niobium oxide-based materials for fast-charging lithium-ion anodes: Insights from structure to property Recent progress of hydrogel-based bioelectronics for mechanophysiological signal sensing Dopant-induced interactions in spiro-OMeTAD: Advancing hole transport for perovskite solar cells A review on additive manufacturing of piezoelectric ceramics: From feedstock development to properties of sintered parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1