{"title":"The adaptability research and evaluation of digital distance protection based on Python and PSCAD","authors":"Yining Guo","doi":"10.1016/j.phycom.2024.102442","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of power systems, digital distance protection, as an innovative and cutting-edge technology, plays a crucial role in ensuring the stable operation of the power grid. Due to its high precision, rapidity, and reliability, digital distance protection has become a key component of power system safety. Distance protection is widely used in distribution networks at or below 35 kV. Therefore, studying its adaptability and effectiveness as a remote backup protection can provide an effective foundation for improving grid security.With the utilization of Python and PSCAD, the adaptability of digital distance protection is meticulously examined in the context of low voltage side faults in 110 kV/35 kV transformers, specifically as a remote backup protection measure. The core objective of this investigation is to assess the efficacy of this protection strategy in upholding the safety and reliability of power systems. To achieve this, 3 approaches is employed: theoretical analysis, simulation modeling, and experimental validation. This process allows for a comprehensive evaluation of the performance characteristics and application efficacy of digital distance protection. The insights garnered from this meticulous study offer profound understanding into the strengths and potential limitations of this protection paradigm, serving as a solid foundation for the refinement of existing protection strategies and the enhancement of the overall resilience of power systems. In essence, this article aims to evaluate the effectiveness of digital distance protection as a remote backup protection strategy for faults on the low-voltage side of 110 kV/35 kV transformers. The core objective is to assess the efficacy of this protection strategy in maintaining the safety and reliability of the power system.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"66 ","pages":"Article 102442"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724001605","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of power systems, digital distance protection, as an innovative and cutting-edge technology, plays a crucial role in ensuring the stable operation of the power grid. Due to its high precision, rapidity, and reliability, digital distance protection has become a key component of power system safety. Distance protection is widely used in distribution networks at or below 35 kV. Therefore, studying its adaptability and effectiveness as a remote backup protection can provide an effective foundation for improving grid security.With the utilization of Python and PSCAD, the adaptability of digital distance protection is meticulously examined in the context of low voltage side faults in 110 kV/35 kV transformers, specifically as a remote backup protection measure. The core objective of this investigation is to assess the efficacy of this protection strategy in upholding the safety and reliability of power systems. To achieve this, 3 approaches is employed: theoretical analysis, simulation modeling, and experimental validation. This process allows for a comprehensive evaluation of the performance characteristics and application efficacy of digital distance protection. The insights garnered from this meticulous study offer profound understanding into the strengths and potential limitations of this protection paradigm, serving as a solid foundation for the refinement of existing protection strategies and the enhancement of the overall resilience of power systems. In essence, this article aims to evaluate the effectiveness of digital distance protection as a remote backup protection strategy for faults on the low-voltage side of 110 kV/35 kV transformers. The core objective is to assess the efficacy of this protection strategy in maintaining the safety and reliability of the power system.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.