Functional improvement and characterization of protein hydrolysates prepared by the fermentation of irradiated tilapia skin

IF 3.5 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food and Bioproducts Processing Pub Date : 2024-07-14 DOI:10.1016/j.fbp.2024.07.009
Litong Liu , Junwei Qin , Bifeng Lan , Xi Hu , Tao Liao , Xiaofei Tian , Zhenqiang Wu
{"title":"Functional improvement and characterization of protein hydrolysates prepared by the fermentation of irradiated tilapia skin","authors":"Litong Liu ,&nbsp;Junwei Qin ,&nbsp;Bifeng Lan ,&nbsp;Xi Hu ,&nbsp;Tao Liao ,&nbsp;Xiaofei Tian ,&nbsp;Zhenqiang Wu","doi":"10.1016/j.fbp.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p>Gamma irradiation (γ-irradiation) sterilizes and modifies proteins. This study aimed to enhance the performance of protein hydrolysates of fermented tilapia fish skin using irradiation. The results showed that γ-irradiation could effectively kill harmful microorganisms in fish skin at 6 kGy. Irradiation at 1–6 kGy dose disintegrated the internal structure of fish skin proteins, thus increasing the degree of hydrolysis after fermentation by <em>Bacillus subtilis</em> L4; however, irradiation at 9–12 kGy caused cross-linking and aggregation of fish skin proteins. The solubility, and water and oil holding capacity of the protein hydrolysates were significantly improved compared to those of the non-irradiated sample. The maximum emulsifying activity (164.61±16.28 m<sup>2</sup>/g), foaming activity (91.13±2.30 mL), and surface hydrophobicity index (5766.43±770.56) were observed in the protein hydrolysates fermented from fish skin irradiated at 12 kGy. The antioxidant activity of the protein hydrolysates increased with increasing irradiation doses. This suggested that the functional properties and antioxidant activity of protein hydrolysates from fish skin fermentation can be improved by appropriate irradiation pretreatment, providing a feasible method for improving the utilization and quality of proteins in fishery waste.</p></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"147 ","pages":"Pages 219-229"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308524001342","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gamma irradiation (γ-irradiation) sterilizes and modifies proteins. This study aimed to enhance the performance of protein hydrolysates of fermented tilapia fish skin using irradiation. The results showed that γ-irradiation could effectively kill harmful microorganisms in fish skin at 6 kGy. Irradiation at 1–6 kGy dose disintegrated the internal structure of fish skin proteins, thus increasing the degree of hydrolysis after fermentation by Bacillus subtilis L4; however, irradiation at 9–12 kGy caused cross-linking and aggregation of fish skin proteins. The solubility, and water and oil holding capacity of the protein hydrolysates were significantly improved compared to those of the non-irradiated sample. The maximum emulsifying activity (164.61±16.28 m2/g), foaming activity (91.13±2.30 mL), and surface hydrophobicity index (5766.43±770.56) were observed in the protein hydrolysates fermented from fish skin irradiated at 12 kGy. The antioxidant activity of the protein hydrolysates increased with increasing irradiation doses. This suggested that the functional properties and antioxidant activity of protein hydrolysates from fish skin fermentation can be improved by appropriate irradiation pretreatment, providing a feasible method for improving the utilization and quality of proteins in fishery waste.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辐照罗非鱼皮发酵制备的蛋白质水解物的功能改进和特性分析
伽马辐照(γ-辐照)可对蛋白质进行灭菌和改性。本研究旨在利用辐照提高发酵罗非鱼皮蛋白质水解物的性能。结果表明,γ-辐照在 6 kGy 下可有效杀死鱼皮中的有害微生物。1-6 kGy剂量的辐照可瓦解鱼皮蛋白质的内部结构,从而提高枯草杆菌L4发酵后的水解程度;但9-12 kGy剂量的辐照会导致鱼皮蛋白质交联和聚集。与未经过辐照的样品相比,水解蛋白的溶解度、持水量和持油量都有明显提高。辐照 12 kGy 的鱼皮发酵蛋白水解物的乳化活性(164.61±16.28 m2/g)、发泡活性(91.13±2.30 mL)和表面疏水指数(5766.43±770.56)均达到最大值。蛋白质水解物的抗氧化活性随着辐照剂量的增加而增加。这表明,通过适当的辐照预处理可以改善鱼皮发酵蛋白水解物的功能特性和抗氧化活性,为提高渔业废弃物中蛋白质的利用率和质量提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Bioproducts Processing
Food and Bioproducts Processing 工程技术-工程:化工
CiteScore
9.70
自引率
4.30%
发文量
115
审稿时长
24 days
期刊介绍: Official Journal of the European Federation of Chemical Engineering: Part C FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering. Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing. The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those: • Primarily concerned with food formulation • That use experimental design techniques to obtain response surfaces but gain little insight from them • That are empirical and ignore established mechanistic models, e.g., empirical drying curves • That are primarily concerned about sensory evaluation and colour • Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material, • Containing only chemical analyses of biological materials.
期刊最新文献
Robust optimization of regional biomass supply chain system design and operation with data-driven uncertainties Use of liquid nitrogen as pistachio peeling agent: quality parameters of kernel and skins (testa) Development and optimization of a two-step co-extraction process for the recovery of pumpkin seed oil and in-situ enrichment with β-carotene compounds from pumpkin peel Process synthesis, design and techno-economic assessment of bio-succinic acid production Inside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1