Manish Ranjan, Pradeep Kr. Kushwaha, Anand Nandanwar, Vinod Kr. Upadhyay
{"title":"Development of bamboo reinforced cement bonded particle board","authors":"Manish Ranjan, Pradeep Kr. Kushwaha, Anand Nandanwar, Vinod Kr. Upadhyay","doi":"10.1016/j.bamboo.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><p>This work was undertaken to examine the compatibility of bamboo particles and their bonding with Portland cement for bamboo-reinforced cement-bonded particle board. Pozzolana Portland cement was used as a sizing agent. The amount of bamboo particles was taken on an air-dry basis of cement. Sodium silicate (Na<sub>2</sub>SiO<sub>3</sub>) and aluminium sulphate [Al<sub>2</sub>(So<sub>4</sub>)<sub>3</sub>] were used to prevent the heat of hydration and increase the rate of cement setting, respectively. Different ratios of cement and bamboo particles were used to study the properties of the particle board. The physical and mechanical properties of <em>Bambusa bambos</em> bamboo reinforced cement bonded particle boards were evaluated. The density of the boards varied between 1.28 g/cm<sup>3</sup> to 1.36 g/cm<sup>3</sup> in 2.0:1.0 and 3.0:1.0 cement: particle ratios, respectively. The moisture content of the boards was 9.96 %, 6.98 % and 6.62 % for 2.0:1.0, 2.5:1.0 and 3.0:1.0 ratios of cement: particle, respectively. The physical properties of the board, such as density, moisture content, water absorption and thickness swelling decreased with an increase in the cement: bamboo particle ratio. The maximum MOR and MOE were 9.17 N/mm<sup>2</sup> and 4884 N/mm<sup>2</sup>, respectively in 3.0:1.0 cement: bamboo particle ratios. The mechanical properties of the boards such as tensile strength, modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal were increased with an increase in the cement: bamboo particle ratios. The 2.5:1.0 and 3.0:1.0 cement: bamboo particle ratios performed best for cement-bonded particle boards and also passed the IS: 14276 standard. These cement-bonded particle boards can be used for partitioning, wall cladding, flooring, false sealing, kitchen cabinets and other purposes.</p></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"8 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773139124000405/pdfft?md5=438273b2bc3e4ed1a451d112e25d622e&pid=1-s2.0-S2773139124000405-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139124000405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work was undertaken to examine the compatibility of bamboo particles and their bonding with Portland cement for bamboo-reinforced cement-bonded particle board. Pozzolana Portland cement was used as a sizing agent. The amount of bamboo particles was taken on an air-dry basis of cement. Sodium silicate (Na2SiO3) and aluminium sulphate [Al2(So4)3] were used to prevent the heat of hydration and increase the rate of cement setting, respectively. Different ratios of cement and bamboo particles were used to study the properties of the particle board. The physical and mechanical properties of Bambusa bambos bamboo reinforced cement bonded particle boards were evaluated. The density of the boards varied between 1.28 g/cm3 to 1.36 g/cm3 in 2.0:1.0 and 3.0:1.0 cement: particle ratios, respectively. The moisture content of the boards was 9.96 %, 6.98 % and 6.62 % for 2.0:1.0, 2.5:1.0 and 3.0:1.0 ratios of cement: particle, respectively. The physical properties of the board, such as density, moisture content, water absorption and thickness swelling decreased with an increase in the cement: bamboo particle ratio. The maximum MOR and MOE were 9.17 N/mm2 and 4884 N/mm2, respectively in 3.0:1.0 cement: bamboo particle ratios. The mechanical properties of the boards such as tensile strength, modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal were increased with an increase in the cement: bamboo particle ratios. The 2.5:1.0 and 3.0:1.0 cement: bamboo particle ratios performed best for cement-bonded particle boards and also passed the IS: 14276 standard. These cement-bonded particle boards can be used for partitioning, wall cladding, flooring, false sealing, kitchen cabinets and other purposes.