Shadfar Davoodi , Hung Vo Thanh , David A. Wood , Mohammad Mehrad , Mohammad Reza Hajsaeedi , Valeriy S. Rukavishnikov
{"title":"Combined deep-learning optimization predictive models for determining carbon dioxide solubility in ionic liquids","authors":"Shadfar Davoodi , Hung Vo Thanh , David A. Wood , Mohammad Mehrad , Mohammad Reza Hajsaeedi , Valeriy S. Rukavishnikov","doi":"10.1016/j.jii.2024.100662","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the development of predictive models for carbon dioxide (CO<sub>2</sub>) solubility in ionic liquids based on a compiled dataset of 10,116 experimentally measured data points involving four input variables: pressure (P), temperature (T), cation type, and anion type. The deep-learning (DL) predictive models evaluated are standalone and hybrid versions of convolutional neural network (CNN) and long short-term memory (LSTM) algorithms with cuckoo optimization algorithm (COA) and gradient-based optimization (GBO). The laboratory-measured data was separated into training and test categories, and each category was normalized separately to improve the performance of the deep learning algorithms. The Mahalanobis distance-based quantile method was utilized to identify any outliers in the training data. Once identified, the outlier data points were eliminated from the training dataset. The control parameters of the deep learning algorithms were optimized using COA to enhance their efficiency, and the algorithms were hybridized with optimization algorithms to further improve their performance. The resulting models were analyzed to assess their accuracy, degree of overfitting, and the importance of input features. The study found that using 80% of the data for training and 20% for testing results in more accurate and generalizable models. Using the outlier detection method on the training data led to 307 data points being eliminated as outliers. Developing CO<sub>2</sub>-solubility predictive model showed that, the CNN<img>COA model had the lowest RMSE and highest R<sup>2</sup> among the developed models, indicating high generalizability for data unseen by the trained model. The analysis revealed that using optimization algorithms increased the CO<sub>2</sub>-solubility prediction performance of DL algorithms and reduced overfitting. T and cation type were the most and least important input features, respectively. Simultaneous changes in cation and anion type on CO<sub>2</sub>-solubility predictions displayed no systematic pattern. For increases in T, CO<sub>2</sub> solubility typically decreased, whereas for increases in P CO<sub>2</sub> solubility always increased but at variable rates. The results of this study can be used to develop accurate and generalizable CO<sub>2</sub>-solubility predictive models for various applications.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"41 ","pages":"Article 100662"},"PeriodicalIF":10.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001067","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the development of predictive models for carbon dioxide (CO2) solubility in ionic liquids based on a compiled dataset of 10,116 experimentally measured data points involving four input variables: pressure (P), temperature (T), cation type, and anion type. The deep-learning (DL) predictive models evaluated are standalone and hybrid versions of convolutional neural network (CNN) and long short-term memory (LSTM) algorithms with cuckoo optimization algorithm (COA) and gradient-based optimization (GBO). The laboratory-measured data was separated into training and test categories, and each category was normalized separately to improve the performance of the deep learning algorithms. The Mahalanobis distance-based quantile method was utilized to identify any outliers in the training data. Once identified, the outlier data points were eliminated from the training dataset. The control parameters of the deep learning algorithms were optimized using COA to enhance their efficiency, and the algorithms were hybridized with optimization algorithms to further improve their performance. The resulting models were analyzed to assess their accuracy, degree of overfitting, and the importance of input features. The study found that using 80% of the data for training and 20% for testing results in more accurate and generalizable models. Using the outlier detection method on the training data led to 307 data points being eliminated as outliers. Developing CO2-solubility predictive model showed that, the CNNCOA model had the lowest RMSE and highest R2 among the developed models, indicating high generalizability for data unseen by the trained model. The analysis revealed that using optimization algorithms increased the CO2-solubility prediction performance of DL algorithms and reduced overfitting. T and cation type were the most and least important input features, respectively. Simultaneous changes in cation and anion type on CO2-solubility predictions displayed no systematic pattern. For increases in T, CO2 solubility typically decreased, whereas for increases in P CO2 solubility always increased but at variable rates. The results of this study can be used to develop accurate and generalizable CO2-solubility predictive models for various applications.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.