{"title":"Multi-feature fusion and memory-based mobile robot target tracking system","authors":"Hanqing Sun, Shijie Zhang, Qingle Quan","doi":"10.1049/csy2.12119","DOIUrl":null,"url":null,"abstract":"<p>In crowded settings, mobile robots face challenges like target disappearance and occlusion, impacting tracking performance. Despite existing optimisations, tracking in complex environments remains insufficient. To address this issue, the authors propose a tailored visual navigation tracking system for crowded scenes. For target disappearance, an autonomous navigation strategy based on target coordinates, utilising a path memory bank for intelligent search and re-tracking is introduced. This significantly enhances tracking success. To handle target occlusion, the system relies on appearance features extracted by a target detection network and a feature memory bank for enhanced sensitivity. Servo control technology ensures robust target tracking by fully utilising appearance information and motion characteristics, even in occluded scenarios. Comprehensive testing on the OTB100 dataset validates the system's effectiveness in addressing target tracking challenges in diverse crowded environments, affirming algorithm robustness.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12119","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In crowded settings, mobile robots face challenges like target disappearance and occlusion, impacting tracking performance. Despite existing optimisations, tracking in complex environments remains insufficient. To address this issue, the authors propose a tailored visual navigation tracking system for crowded scenes. For target disappearance, an autonomous navigation strategy based on target coordinates, utilising a path memory bank for intelligent search and re-tracking is introduced. This significantly enhances tracking success. To handle target occlusion, the system relies on appearance features extracted by a target detection network and a feature memory bank for enhanced sensitivity. Servo control technology ensures robust target tracking by fully utilising appearance information and motion characteristics, even in occluded scenarios. Comprehensive testing on the OTB100 dataset validates the system's effectiveness in addressing target tracking challenges in diverse crowded environments, affirming algorithm robustness.