{"title":"Synthesis and Characterization of Multifunctional Symmetrical Squaraine Dyes for Molecular Photovoltaics by Terminal Alkyl Chain Modifications","authors":"Kota Mori, Y. Kurokawa, Shyam S. Pandey","doi":"10.3390/colorants3030014","DOIUrl":null,"url":null,"abstract":"Novel far-red sensitive symmetric squaraine (SQ) dyes with terminal alkyl chain modifications were designed, synthesized, and characterized, aiming towards imparting multifunctionalities such as photosensitization, dye aggregation prevention, and source of electrolyte components. The dye sensitizer SQ-80 with alkyl chain terminal modifications consisting of 1-methylimidazolium iodide was designed and synthesized as a new dye sensitizer for DSSCs based on symmetric SQ-4 without any terminal modification used as reference. Upon adsorption on the mesoporous TiO2 surface, SQ-80 demonstrated reduced dye aggregation and stronger binding to the TiO2 surface, leading to enhanced durability of DSSCs. Apart from the most common photosensitization behavior, the newly designed dye demonstrated multifunctionalities such as aggregation prevention and electrolyte functionality, utilizing iodine-based redox electrolytes in the presence and absence of I2 and LiI additives. In the absence of LiI and I2, a mixture of SQ-77 with alkyl chain terminal modifications consisting of iodide and SQ-80 demonstrated a photoconversion efficiency of 1.54% under simulated solar irradiation, which was about six times higher compared with the reference dye SQ-4 (0.24%) (having no alkyl chain terminal modification).","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants3030014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Novel far-red sensitive symmetric squaraine (SQ) dyes with terminal alkyl chain modifications were designed, synthesized, and characterized, aiming towards imparting multifunctionalities such as photosensitization, dye aggregation prevention, and source of electrolyte components. The dye sensitizer SQ-80 with alkyl chain terminal modifications consisting of 1-methylimidazolium iodide was designed and synthesized as a new dye sensitizer for DSSCs based on symmetric SQ-4 without any terminal modification used as reference. Upon adsorption on the mesoporous TiO2 surface, SQ-80 demonstrated reduced dye aggregation and stronger binding to the TiO2 surface, leading to enhanced durability of DSSCs. Apart from the most common photosensitization behavior, the newly designed dye demonstrated multifunctionalities such as aggregation prevention and electrolyte functionality, utilizing iodine-based redox electrolytes in the presence and absence of I2 and LiI additives. In the absence of LiI and I2, a mixture of SQ-77 with alkyl chain terminal modifications consisting of iodide and SQ-80 demonstrated a photoconversion efficiency of 1.54% under simulated solar irradiation, which was about six times higher compared with the reference dye SQ-4 (0.24%) (having no alkyl chain terminal modification).