R. de Filippis, E. Carbone, M. Rania, M. Aloi, C. Segura-García, P. De Fazio
{"title":"Applying a clinical staging model in patients affected by schizophrenia spectrum disorder","authors":"R. de Filippis, E. Carbone, M. Rania, M. Aloi, C. Segura-García, P. De Fazio","doi":"10.3389/fpsyt.2024.1387913","DOIUrl":null,"url":null,"abstract":"Clinical staging, already widespread in medicine, represents a new frontier in psychiatry. Our goal was to convert the existing theoretical staging model for schizophrenia into a feasible tool to have a timely assessment of patients’ health status applicable in any psychiatric facility.We assessed the empirical soundness of a staging model for schizophrenia spectrum disorders (SSDs), primarily centered on their current status. This model delineated six sequential stages (1, 2A, 2B, 3A, 3B, and 4) based on factors like symptom recurrence, persistence, and progression, including functional decline. Our analysis involved data from 137 individuals affected by SSDs. We examined 22 baseline variables, 23 construct-related variables, and 31 potentially modifiable clinical variables.The latter stages demonstrated significantly poorer outcomes compared to the early stages across various measures, indicating medium to large effect sizes and a dose–response pattern. This pattern confirmed the validity of the model. Notably, stages 2 and 3A exhibited pronounced differences in comparison to other stages, although variables from each validation category also distinguished between consecutive stages, particularly 3A and beyond.Baseline predictors, such as familial predisposition to schizophrenia, neurodevelopmental impairment, childhood adversities, treatment delay, negative symptoms, neurological impairment, and inadequate early response to treatment, independently largely explained the staging variance. The clinical staging model, grounded in the extended course of psychosis, exhibited sound validity and feasibility, even without the use of biological or neuroimaging markers, which could greatly improve the sensitivity of the model. These findings provide insights into stage indicators and predictors of clinical stages from the onset of psychosis.","PeriodicalId":506619,"journal":{"name":"Frontiers in Psychiatry","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpsyt.2024.1387913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical staging, already widespread in medicine, represents a new frontier in psychiatry. Our goal was to convert the existing theoretical staging model for schizophrenia into a feasible tool to have a timely assessment of patients’ health status applicable in any psychiatric facility.We assessed the empirical soundness of a staging model for schizophrenia spectrum disorders (SSDs), primarily centered on their current status. This model delineated six sequential stages (1, 2A, 2B, 3A, 3B, and 4) based on factors like symptom recurrence, persistence, and progression, including functional decline. Our analysis involved data from 137 individuals affected by SSDs. We examined 22 baseline variables, 23 construct-related variables, and 31 potentially modifiable clinical variables.The latter stages demonstrated significantly poorer outcomes compared to the early stages across various measures, indicating medium to large effect sizes and a dose–response pattern. This pattern confirmed the validity of the model. Notably, stages 2 and 3A exhibited pronounced differences in comparison to other stages, although variables from each validation category also distinguished between consecutive stages, particularly 3A and beyond.Baseline predictors, such as familial predisposition to schizophrenia, neurodevelopmental impairment, childhood adversities, treatment delay, negative symptoms, neurological impairment, and inadequate early response to treatment, independently largely explained the staging variance. The clinical staging model, grounded in the extended course of psychosis, exhibited sound validity and feasibility, even without the use of biological or neuroimaging markers, which could greatly improve the sensitivity of the model. These findings provide insights into stage indicators and predictors of clinical stages from the onset of psychosis.