Innovative Approach to Characterize Cheese Whey Anaerobic Digestion Using Combined Mechanistic and Machine Learning Models

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS BioEnergy Research Pub Date : 2024-07-16 DOI:10.1007/s12155-024-10785-w
Md Tausif Akram, Rameez Ahmad Aftab, Khursheed B. Ansari, Iram Arman, Mohammad Abdul Hakeem, Sadaf Zaidi, Mohammad Danish
{"title":"Innovative Approach to Characterize Cheese Whey Anaerobic Digestion Using Combined Mechanistic and Machine Learning Models","authors":"Md Tausif Akram,&nbsp;Rameez Ahmad Aftab,&nbsp;Khursheed B. Ansari,&nbsp;Iram Arman,&nbsp;Mohammad Abdul Hakeem,&nbsp;Sadaf Zaidi,&nbsp;Mohammad Danish","doi":"10.1007/s12155-024-10785-w","DOIUrl":null,"url":null,"abstract":"<div><p>Whey, a cheese production byproduct, can be anaerobically digested to reduce pollution and generate energy. Yet, stability is challenging due to organic content sensitivity and influent fluctuations. The present work attempts to implement the mechanistic model and machine learning (ML) models (support vector regression (SVR) and artificial neural networks (ANNs)) together to predict the concentration dataset of substrate 1 (S<sub>1</sub>) (i.e., carbohydrates and proteins), substrate 2 (S<sub>2</sub>) (i.e., glucids and amino acids), VFA, and methane (CH<sub>4</sub>) as a function of input independent variables, namely time and organic loading rate (OLR). The R<sup>2</sup> values for S<sub>1</sub>, S<sub>2</sub>, VFA, and CH<sub>4</sub> obtained through the mechanistic model remained as 0.953, 0.918, 0.84, and 0.976, respectively; for ANN models, 0.982, 0.928, 0.958, and 0.99; and for SVR models, 0.984, 0.939, 0.938, and 0.999, respectively. ML models have been discovered to be among the most precise and versatile compared to the mechanistic model. Moreover, other performance metrics, such as RMSE (0.022–2.177), MRE (0.007–0.100), and AARE (0.008–0.104) for ANN and RMSE (0.083–1.961), MRE (0.021–0.091), and AARE (0.037–0.089) for SVR, are obtained, indicating good prediction performances for both ML models. SVR and ANN models excel, aligning concentration curves to the optimum line when input parameters are adjusted, unlike the subpar traditional-based mechanistic model. Therefore, ML methods offer a tool to predict anaerobic digestion more effectively, enhancing design and operations.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2474 - 2486"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10785-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Whey, a cheese production byproduct, can be anaerobically digested to reduce pollution and generate energy. Yet, stability is challenging due to organic content sensitivity and influent fluctuations. The present work attempts to implement the mechanistic model and machine learning (ML) models (support vector regression (SVR) and artificial neural networks (ANNs)) together to predict the concentration dataset of substrate 1 (S1) (i.e., carbohydrates and proteins), substrate 2 (S2) (i.e., glucids and amino acids), VFA, and methane (CH4) as a function of input independent variables, namely time and organic loading rate (OLR). The R2 values for S1, S2, VFA, and CH4 obtained through the mechanistic model remained as 0.953, 0.918, 0.84, and 0.976, respectively; for ANN models, 0.982, 0.928, 0.958, and 0.99; and for SVR models, 0.984, 0.939, 0.938, and 0.999, respectively. ML models have been discovered to be among the most precise and versatile compared to the mechanistic model. Moreover, other performance metrics, such as RMSE (0.022–2.177), MRE (0.007–0.100), and AARE (0.008–0.104) for ANN and RMSE (0.083–1.961), MRE (0.021–0.091), and AARE (0.037–0.089) for SVR, are obtained, indicating good prediction performances for both ML models. SVR and ANN models excel, aligning concentration curves to the optimum line when input parameters are adjusted, unlike the subpar traditional-based mechanistic model. Therefore, ML methods offer a tool to predict anaerobic digestion more effectively, enhancing design and operations.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机理和机器学习相结合的模型表征奶酪乳清厌氧消化的创新方法
乳清是奶酪生产过程中产生的一种副产品,可以通过厌氧消化来减少污染和产生能量。然而,由于有机物含量的敏感性和进水的波动,其稳定性具有挑战性。本研究尝试将机理模型和机器学习(ML)模型(支持向量回归(SVR)和人工神经网络(ANN))结合起来,预测底物 1(S1)(即碳水化合物和蛋白质)、底物 2(S2)(即葡萄糖和氨基酸)、VFA 和甲烷(CH4)的浓度数据集与输入自变量(即时间和有机负荷率(OLR))的函数关系。通过机理模型获得的 S1、S2、VFA 和 CH4 的 R2 值分别为 0.953、0.918、0.84 和 0.976;ANN 模型的 R2 值分别为 0.982、0.928、0.958 和 0.99;SVR 模型的 R2 值分别为 0.984、0.939、0.938 和 0.999。与机理模型相比,ML 模型被认为是最精确和最通用的模型之一。此外,还获得了其他性能指标,如 ANN 的 RMSE(0.022-2.177)、MRE(0.007-0.100)和 AARE(0.008-0.104),以及 SVR 的 RMSE(0.083-1.961)、MRE(0.021-0.091)和 AARE(0.037-0.089),表明这两种 ML 模型都具有良好的预测性能。SVR 和 ANN 模型表现出色,在调整输入参数后,浓度曲线与最佳线一致,这与基于传统机理模型的不佳表现不同。因此,ML 方法为更有效地预测厌氧消化提供了一种工具,可改进设计和操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
期刊最新文献
Third-Generation L-Lactic Acid Biorefinery Approaches: Exploring the Viability of Macroalgae Detritus Microalga Growth-Promoting Bacteria as Strategy to Improve CO2 Removal from Biogas Micro-Raman Spectroscopy Explains the Population-Scale Heterogeneity in Lipid Profile in Chlamydomonas reinhardtii Cultivated Under Single-Stage and Two-Stage Salt Stress Exergy Analysis of Integrated Methanol and Dimethyl-Ether Co-production Towards Net Zero Waste Emission Biomass Valorization for Bioenergy Production: Current Techniques, Challenges, and Pathways to Solutions for Sustainable Bioeconomy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1