Temperature responses of ecosystem respiration

Shuli Niu, Weinan Chen, Lìyǐn L. Liáng, Carlos A. Sierra, Jianyang Xia, Song Wang, Mary Heskel, Kaizad F. Patel, Ben Bond-Lamberty, Jinsong Wang, Gabriel Yvon-Durocher, Miko U. F. Kirschbaum, Owen K. Atkin, Yuanyuan Huang, Guirui Yu, Yiqi Luo
{"title":"Temperature responses of ecosystem respiration","authors":"Shuli Niu, Weinan Chen, Lìyǐn L. Liáng, Carlos A. Sierra, Jianyang Xia, Song Wang, Mary Heskel, Kaizad F. Patel, Ben Bond-Lamberty, Jinsong Wang, Gabriel Yvon-Durocher, Miko U. F. Kirschbaum, Owen K. Atkin, Yuanyuan Huang, Guirui Yu, Yiqi Luo","doi":"10.1038/s43017-024-00569-3","DOIUrl":null,"url":null,"abstract":"Terrestrial ecosystems release ~106–130 PgC yr–1 into the atmosphere through respiration, counterbalancing photosynthetic carbon uptake and determining the strength of the land carbon sink. The effect of anthropogenic warming on the land carbon sink will depend on the temperature response of respiration. In this Review, we explore the relationships between temperature and ecosystem respiration from experimental and observational data at leaf, microbial, ecosystem and global scales. Contrary to the assumed monotonic increase in respiration with increasing temperature derived from Earth system models, empirical findings indicate a unimodal temperature response with a peak in respiration at an optimal temperature (Topt). This unimodality is observed across a range of organization levels with Topt values of 40–60 °C at the leaf and plant level, 11–46 °C at a microbial level and 6.5–33.3 °C at the global scale. Various mechanisms contribute to this unimodal pattern including enzyme deactivation, the thermodynamics of enzyme-catalysed reactions and changes in temperature-dependent factors such as soil moisture, nutrient availability and vegetation physiology. Incorporating the unimodality of these observed temperature responses of ecosystem respiration into Earth system models could facilitate attribution studies to identify the mechanisms responsible for the peaked response and increase the accuracy of carbon sequestration predictions. The future of the land carbon sink depends on the temperature response of ecosystem respiration. This Review explores observational and experimental evidence for a unimodal temperature response of respiration and the implications for carbon sequestration predictions.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-024-00569-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Terrestrial ecosystems release ~106–130 PgC yr–1 into the atmosphere through respiration, counterbalancing photosynthetic carbon uptake and determining the strength of the land carbon sink. The effect of anthropogenic warming on the land carbon sink will depend on the temperature response of respiration. In this Review, we explore the relationships between temperature and ecosystem respiration from experimental and observational data at leaf, microbial, ecosystem and global scales. Contrary to the assumed monotonic increase in respiration with increasing temperature derived from Earth system models, empirical findings indicate a unimodal temperature response with a peak in respiration at an optimal temperature (Topt). This unimodality is observed across a range of organization levels with Topt values of 40–60 °C at the leaf and plant level, 11–46 °C at a microbial level and 6.5–33.3 °C at the global scale. Various mechanisms contribute to this unimodal pattern including enzyme deactivation, the thermodynamics of enzyme-catalysed reactions and changes in temperature-dependent factors such as soil moisture, nutrient availability and vegetation physiology. Incorporating the unimodality of these observed temperature responses of ecosystem respiration into Earth system models could facilitate attribution studies to identify the mechanisms responsible for the peaked response and increase the accuracy of carbon sequestration predictions. The future of the land carbon sink depends on the temperature response of ecosystem respiration. This Review explores observational and experimental evidence for a unimodal temperature response of respiration and the implications for carbon sequestration predictions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生态系统呼吸的温度响应
陆地生态系统每年通过呼吸作用向大气释放约 106-130 PgC,抵消光合作用的碳吸收,并决定陆地碳汇的强度。人为变暖对陆地碳汇的影响将取决于呼吸作用的温度响应。在本综述中,我们将从叶片、微生物、生态系统和全球尺度的实验和观测数据中探讨温度与生态系统呼吸作用之间的关系。与地球系统模型假定的呼吸作用随温度升高而单调增加的情况相反,实证研究结果表明,温度反应具有单模态性,呼吸作用在最佳温度(Topt)达到峰值。在一系列组织水平上都可以观察到这种单模性,叶片和植物水平的 Topt 值为 40-60℃,微生物水平的 Topt 值为 11-46℃,全球范围的 Topt 值为 6.5-33.3℃。造成这种单模态模式的机制多种多样,包括酶失活、酶催化反应的热力学以及土壤湿度、养分供应和植被生理等温度相关因素的变化。将观测到的生态系统呼吸的温度响应的单模性纳入地球系统模型,可促进归因研究,以确定峰值响应的机制,并提高固碳预测的准确性。陆地碳汇的未来取决于生态系统呼吸的温度响应。本综述探讨了呼吸作用单峰温度响应的观测和实验证据及其对固碳预测的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lake ice quality in a warming world The occurrence, mechanisms and hazards of large landslides along tablelands Past climate change effects on human evolution Nitrogen management during decarbonization Exploring the hadal zone with lab-on-chip sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1