首页 > 最新文献

Nature Reviews Earth & Environment最新文献

英文 中文
Planetary Boundaries guide humanity’s future on Earth 行星边界指引人类在地球上的未来
Pub Date : 2024-11-08 DOI: 10.1038/s43017-024-00597-z
Johan Rockström, Jonathan F. Donges, Ingo Fetzer, Maria A. Martin, Lan Wang-Erlandsson, Katherine Richardson
Human pressures have pushed the Earth system deep into the Anthropocene, threatening its stability, resilience and functioning. The Planetary Boundaries (PB) framework emerged against these threats, setting safe levels to the biophysical systems and processes that, with high likelihood, ensure life-supporting Holocene-like conditions. In this Review, we synthesize PB advancements, detailing its emergence and mainstreaming across scientific disciplines and society. The nine PBs capture the key functions regulating the Earth system. The safe operating space has been transgressed for six of these. PB science is essential to prevent further Earth system risks and has sparked new research on the precision of safe boundaries. Human development within planetary boundaries defines sustainable development, informing advances in social sciences. Each PB translates to a finite budget that the world must operate within, requiring strengthened global governance. The PB framework has been adopted by businesses and informed policy across the world, informing new thinking about fundamental justice concerns, and has inspired, among other concepts, the planetary commons, planetary health and doughnut economics. Future work must increase the precision and frequency of PB analyses, and, together with Earth observation data analytics, produce a high-resolution and real-time state of planetary health. The Planetary Boundary (PB) framework — which provides guardrails to maintain the safe operating space for humanity — has received widespread scientific and societal interest. This Review outlines the emergence and mainstreaming of PB thinking, including relevance to Earth system science, justice, governance, economics and sustainability.
人类的压力将地球系统推向了 "人类世",威胁着地球系统的稳定性、复原力和功能。行星边界(PB)框架正是针对这些威胁而提出的,它为生物物理系统和过程设定了安全等级,从而极有可能确保在类似全新世的条件下维持生命。在本《综述》中,我们总结了地球观测框架的进展,详细介绍了其在科学学科和社会中的出现和主流化情况。这九个 PB 涵盖了调节地球系统的关键功能。其中六项的安全运行空间已被超越。行星边界科学对于防止进一步的地球系统风险至关重要,并引发了关于安全边界精确性的新研究。在地球边界内的人类发展定义了可持续发展,为社会科学的进步提供了信息。每个 PB 都意味着世界必须在有限的预算范围内运作,这就要求加强全球治理。地球疆界框架已被企业采用,并为世界各地的政策提供了依据,为有关基本正义问题的新思维提供了信息,并启发了地球公域、地球健康和甜甜圈经济学等概念。未来的工作必须提高行星边界分析的精度和频率,并与地球观测数据分析相结合,生成高分辨率的实时行星健康状况。行星边界(Planetary Boundary,PB)框架为维护人类的安全运行空间提供了保障,受到了科学界和社会的广泛关注。本综述概述了行星边界思维的出现和主流化,包括与地球系统科学、正义、治理、经济学和可持续性的相关性。
{"title":"Planetary Boundaries guide humanity’s future on Earth","authors":"Johan Rockström, Jonathan F. Donges, Ingo Fetzer, Maria A. Martin, Lan Wang-Erlandsson, Katherine Richardson","doi":"10.1038/s43017-024-00597-z","DOIUrl":"10.1038/s43017-024-00597-z","url":null,"abstract":"Human pressures have pushed the Earth system deep into the Anthropocene, threatening its stability, resilience and functioning. The Planetary Boundaries (PB) framework emerged against these threats, setting safe levels to the biophysical systems and processes that, with high likelihood, ensure life-supporting Holocene-like conditions. In this Review, we synthesize PB advancements, detailing its emergence and mainstreaming across scientific disciplines and society. The nine PBs capture the key functions regulating the Earth system. The safe operating space has been transgressed for six of these. PB science is essential to prevent further Earth system risks and has sparked new research on the precision of safe boundaries. Human development within planetary boundaries defines sustainable development, informing advances in social sciences. Each PB translates to a finite budget that the world must operate within, requiring strengthened global governance. The PB framework has been adopted by businesses and informed policy across the world, informing new thinking about fundamental justice concerns, and has inspired, among other concepts, the planetary commons, planetary health and doughnut economics. Future work must increase the precision and frequency of PB analyses, and, together with Earth observation data analytics, produce a high-resolution and real-time state of planetary health. The Planetary Boundary (PB) framework — which provides guardrails to maintain the safe operating space for humanity — has received widespread scientific and societal interest. This Review outlines the emergence and mainstreaming of PB thinking, including relevance to Earth system science, justice, governance, economics and sustainability.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"773-788"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00597-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal CO2 amplitude in northern high latitudes 北部高纬度地区二氧化碳的季节振幅
Pub Date : 2024-10-31 DOI: 10.1038/s43017-024-00600-7
Zhihua Liu, Brendan M. Rogers, Gretchen Keppel-Aleks, Manuel Helbig, Ashley P. Ballantyne, John S. Kimball, Abhishek Chatterjee, Adrianna Foster, Aleya Kaushik, Anna-Maria Virkkala, Arden L. Burrell, Christopher Schwalm, Colm Sweeney, Edward A. G. Schuur, Jacqueline Dean, Jennifer D. Watts, Jinhyuk E. Kim, Jonathan A. Wang, Lei Hu, Lisa Welp, Logan T. Berner, Marguerite Mauritz, Michelle Mack, Nicholas C. Parazoo, Nima Madani, Ralph Keeling, Roisin Commane, Scott Goetz, Shilong Piao, Susan M. Natali, Wenjuan Wang, Wolfgang Buermann, Xanthe Walker, Xin Lin, Xuhui Wang, Yuming Jin, Kailiang Yu, Yangjian Zhang
Global climate change is influencing the seasonal cycle amplitude of atmospheric CO2 (SCA), with the strongest increases at northern high latitudes (NHL; >45° N). In this Review, we explore the changes and underlying mechanisms influencing the NHL SCA, focusing on Arctic and boreal terrestrial ecosystems. Latitudinal gradients in the SCA are largely governed by seasonality in temperature and primary production, and their influence on ecosystem carbon dynamics. In the NHL, the SCA has increased by 50% since the 1960s, mostly due to enhanced seasonality in net carbon dioxide (CO2) exchange in NHL terrestrial ecosystems. Temperature most strongly influences this trend, owing to warming impacts on growing season length and plant productivity; CO2 fertilization effects have a secondary role. Eurasian boreal ecosystems exert the strongest influence on the SCA, and spring and summer are the most influential seasons. Enhanced ecosystem respiration during the non-growing season exhibits most uncertainty in the SCA response to global and landscape drivers. Observed changes in the seasonal amplitude are projected to continue. Key priorities include extending carbon flux and ecosystem observation networks, particularly in tundra ecosystems, and including drivers such as vegetation cover and permafrost in process models to better simulate seasonal dynamics of net CO2 exchange in the NHL. Changes in the seasonal cycle amplitude of atmospheric CO2 (SCA) reflect large-scale changes in the global carbon cycle. This Review summarizes the positive SCA trend in the northern high latitudes, where the signal is strongest, and explores the underlying mechanisms driving the trend and their relative importance.
全球气候变化正在影响大气中二氧化碳的季节周期振幅(SCA),其中北部高纬度地区(NHL; >45°N)的增幅最大。在本综述中,我们将以北极和北方陆地生态系统为重点,探讨影响北半球高纬度地区 SCA 的变化和内在机制。SCA的纬度梯度主要受温度和初级生产的季节性及其对生态系统碳动态的影响所支配。自 20 世纪 60 年代以来,NHL 的 SCA 增加了 50%,这主要是由于 NHL 陆地生态系统二氧化碳(CO2)净交换的季节性增强。温度对这一趋势的影响最大,这是因为气候变暖影响了生长季节的长度和植物的生产力;二氧化碳的施肥效应则起次要作用。欧亚寒带生态系统对 SCA 的影响最大,春季和夏季是影响最大的季节。在非生长季节,生态系统呼吸作用增强,显示出 SCA 对全球和地貌驱动因素响应的最大不确定性。预计观测到的季节振幅变化仍将持续。重点工作包括扩大碳通量和生态系统观测网络,特别是在苔原生态系统中,并将植被覆盖和永久冻土等驱动因素纳入过程模型,以更好地模拟北极圈内净二氧化碳交换的季节动态。大气二氧化碳季节循环振幅(SCA)的变化反映了全球碳循环的大规模变化。本综述总结了信号最强的北部高纬度地区正的 SCA 趋势,并探讨了驱动该趋势的潜在机制及其相对重要性。
{"title":"Seasonal CO2 amplitude in northern high latitudes","authors":"Zhihua Liu, Brendan M. Rogers, Gretchen Keppel-Aleks, Manuel Helbig, Ashley P. Ballantyne, John S. Kimball, Abhishek Chatterjee, Adrianna Foster, Aleya Kaushik, Anna-Maria Virkkala, Arden L. Burrell, Christopher Schwalm, Colm Sweeney, Edward A. G. Schuur, Jacqueline Dean, Jennifer D. Watts, Jinhyuk E. Kim, Jonathan A. Wang, Lei Hu, Lisa Welp, Logan T. Berner, Marguerite Mauritz, Michelle Mack, Nicholas C. Parazoo, Nima Madani, Ralph Keeling, Roisin Commane, Scott Goetz, Shilong Piao, Susan M. Natali, Wenjuan Wang, Wolfgang Buermann, Xanthe Walker, Xin Lin, Xuhui Wang, Yuming Jin, Kailiang Yu, Yangjian Zhang","doi":"10.1038/s43017-024-00600-7","DOIUrl":"10.1038/s43017-024-00600-7","url":null,"abstract":"Global climate change is influencing the seasonal cycle amplitude of atmospheric CO2 (SCA), with the strongest increases at northern high latitudes (NHL; >45° N). In this Review, we explore the changes and underlying mechanisms influencing the NHL SCA, focusing on Arctic and boreal terrestrial ecosystems. Latitudinal gradients in the SCA are largely governed by seasonality in temperature and primary production, and their influence on ecosystem carbon dynamics. In the NHL, the SCA has increased by 50% since the 1960s, mostly due to enhanced seasonality in net carbon dioxide (CO2) exchange in NHL terrestrial ecosystems. Temperature most strongly influences this trend, owing to warming impacts on growing season length and plant productivity; CO2 fertilization effects have a secondary role. Eurasian boreal ecosystems exert the strongest influence on the SCA, and spring and summer are the most influential seasons. Enhanced ecosystem respiration during the non-growing season exhibits most uncertainty in the SCA response to global and landscape drivers. Observed changes in the seasonal amplitude are projected to continue. Key priorities include extending carbon flux and ecosystem observation networks, particularly in tundra ecosystems, and including drivers such as vegetation cover and permafrost in process models to better simulate seasonal dynamics of net CO2 exchange in the NHL. Changes in the seasonal cycle amplitude of atmospheric CO2 (SCA) reflect large-scale changes in the global carbon cycle. This Review summarizes the positive SCA trend in the northern high latitudes, where the signal is strongest, and explores the underlying mechanisms driving the trend and their relative importance.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"802-817"},"PeriodicalIF":0.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00600-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principles for satellite monitoring of vegetation carbon uptake 卫星监测植被碳吸收的原则
Pub Date : 2024-10-29 DOI: 10.1038/s43017-024-00601-6
I. Colin Prentice, Manuela Balzarolo, Keith J. Bloomfield, Jing M. Chen  , Benjamin Dechant, Darren Ghent, Ivan A. Janssens, Xiangzhong Luo  , Catherine Morfopoulos, Youngryel Ryu, Sara Vicca, Roel van Hoolst
Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially regarding temporal trends in GPP. Many models invoke the light use efficiency principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. However, these models vary in their assumptions about the controls of light use efficiency and typically depend on many, poorly constrained parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, improving the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilizing auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve model-based detection of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux-tower network will support systematic evaluation of GPP models. Improved reliability of GPP and biomass production estimates will better characterize temporal variation and advance understanding of the response of the terrestrial carbon cycle to environmental change. Global patterns and trends in primary production are estimated using remote-sensing-based models. This Perspective outlines ways to ensure that the next generation of model predictions robustly characterizes how this key element of the terrestrial carbon cycle is changing.
基于遥感的数值模式利用卫星对植被光吸收的测量来估算全球总初级生产力(GPP)的模式和趋势--这是陆地碳循环的基础。在本《视角》中,我们将讨论利用这些模型估算 GPP 所面临的挑战,并探讨提高其可靠性的方法。目前的模型在结构上差异很大,产生的结果也不尽相同,尤其是在 GPP 的时间趋势方面。许多模型都引用光利用效率原理来估算 GPP,该原理将光吸收与光合作用和植物生物量生产联系起来。然而,这些模型对光利用效率控制的假设各不相同,而且通常依赖于许多约束性较差的参数。生态进化优化原理可以大大减少参数要求,提高 GPP 估算的准确性和一致性,并解释其与环境驱动因素的关系。整合不同卫星和传感器的数据,并利用辅助光学波段检索,可以提高时空分辨率,改进基于模型的植被生理检测,包括干旱胁迫。扩展和协调涡度协方差通量塔网络将支持对 GPP 模型进行系统评估。提高 GPP 和生物量生产估算的可靠性将更好地描述时间变化特征,并促进对陆地碳循环对环境变化的响应的理解。全球初级生产力的模式和趋势是利用遥感模型估算的。本视角概述了如何确保下一代模式预测能够有力地描述陆地碳循环的这一关键要素是如何变化的。
{"title":"Principles for satellite monitoring of vegetation carbon uptake","authors":"I. Colin Prentice, Manuela Balzarolo, Keith J. Bloomfield, Jing M. Chen \u0000 , Benjamin Dechant, Darren Ghent, Ivan A. Janssens, Xiangzhong Luo \u0000 , Catherine Morfopoulos, Youngryel Ryu, Sara Vicca, Roel van Hoolst","doi":"10.1038/s43017-024-00601-6","DOIUrl":"10.1038/s43017-024-00601-6","url":null,"abstract":"Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially regarding temporal trends in GPP. Many models invoke the light use efficiency principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. However, these models vary in their assumptions about the controls of light use efficiency and typically depend on many, poorly constrained parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, improving the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilizing auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve model-based detection of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux-tower network will support systematic evaluation of GPP models. Improved reliability of GPP and biomass production estimates will better characterize temporal variation and advance understanding of the response of the terrestrial carbon cycle to environmental change. Global patterns and trends in primary production are estimated using remote-sensing-based models. This Perspective outlines ways to ensure that the next generation of model predictions robustly characterizes how this key element of the terrestrial carbon cycle is changing.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"818-832"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electric cooking as a clean and just energy solution 电烹饪作为一种清洁、公正的能源解决方案
Pub Date : 2024-10-24 DOI: 10.1038/s43017-024-00608-z
Narasimha D. Rao, Ambuj D. Sagar
Cooking with electric rather than solid-fuel stoves can reduce carbon emissions and indoor air pollution, offering climate and health co-benefits. To make electric cooking a viable clean fuel alternative for energy-poor communities, energy infrastructure and policies need redesigning to ensure reliable, safe and affordable supply.
使用电炉而非固体燃料炉灶做饭可以减少碳排放和室内空气污染,带来气候和健康方面的共同惠益。为了使电炊具成为能源匮乏社区可行的清洁燃料替代品,需要重新设计能源基础设施和政策,以确保可靠、安全和负担得起的供应。
{"title":"Electric cooking as a clean and just energy solution","authors":"Narasimha D. Rao, Ambuj D. Sagar","doi":"10.1038/s43017-024-00608-z","DOIUrl":"10.1038/s43017-024-00608-z","url":null,"abstract":"Cooking with electric rather than solid-fuel stoves can reduce carbon emissions and indoor air pollution, offering climate and health co-benefits. To make electric cooking a viable clean fuel alternative for energy-poor communities, energy infrastructure and policies need redesigning to ensure reliable, safe and affordable supply.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"751-752"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Focusing on architectural beauty to reduce construction waste 注重建筑美,减少建筑垃圾
Pub Date : 2024-10-24 DOI: 10.1038/s43017-024-00609-y
Piotr Piotrowski
Construction and demolition waste is the most substantial waste stream in developed countries, prompting policymakers to enhance circularity, recycling and recovery rates. While strategies that simplify deconstruction and promote material reuse are important, prioritizing architectural beauty offers a compelling solution to extend the lifespan of buildings, reduce construction waste and enrich urban environments.
建筑和拆除废物是发达国家最主要的废物流,促使政策制定者提高循环性、再循环和回收率。简化拆卸和促进材料再利用的战略固然重要,但优先考虑建筑美观也为延长建筑寿命、减少建筑垃圾和丰富城市环境提供了一个令人信服的解决方案。
{"title":"Focusing on architectural beauty to reduce construction waste","authors":"Piotr Piotrowski","doi":"10.1038/s43017-024-00609-y","DOIUrl":"10.1038/s43017-024-00609-y","url":null,"abstract":"Construction and demolition waste is the most substantial waste stream in developed countries, prompting policymakers to enhance circularity, recycling and recovery rates. While strategies that simplify deconstruction and promote material reuse are important, prioritizing architectural beauty offers a compelling solution to extend the lifespan of buildings, reduce construction waste and enrich urban environments.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"749-750"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concepts and evolution of urban hydrology 城市水文学的概念和演变
Pub Date : 2024-10-24 DOI: 10.1038/s43017-024-00599-x
Tim D. Fletcher, Matthew J. Burns, Kathryn L. Russell, Perrine Hamel, Sophie Duchesne, Frédéric Cherqui, Allison H. Roy
Urbanization and climate change are exacerbating the flood risk and ecosystem degradation in urban catchments, with traditional stormwater management systems often overwhelmed. In this Review, we discuss changes in urban hydrology and approaches to stormwater management. Roughly 90% of rainfall on impervious surfaces and drainage infrastructure becomes run-off, enhancing rainfall export away from cities and leading to local water scarcity and downstream flooding and pollution. Projected increases in urban populations (68% in cities by 2050) and rainfall intensity (~12% in the 10-year and 50-year recurrence interval intensity, under 1.5 °C warming) will exacerbate these issues. Transforming stormwater systems is thus urgently needed, to mitigate flood risk and also to address community desires for environmental protection and enhanced water security. Opportunities include rain gardens and other nature-based stormwater control measures (which restore natural flows and offer other ecosystem services), smart sensor monitoring networks and real-time management (which sustain natural flow regimes, mitigate flood risk and protect ecosystem services) and stormwater harvesting (to avoid local water scarcity). Community acceptance of stormwater harvesting is as high as 96% and stormwater is a substantial resource, with volumes often exceeding demand in some parts of the world. Delivering additional transformations globally requires research into strategies to incentivize engagement and investment, and policies to guide governance of decentralized networks. Urbanization and climate-induced rainfall changes are enhancing flood risk, putting increased demand on urban hydrology management. This Review summarizes how perceptions and approaches in stormwater management are evolving, and emphasizes the need to transform stormwater from a hazard to a resource.
城市化和气候变化正在加剧城市集水区的洪水风险和生态系统退化,传统的雨水管理系统往往不堪重负。在本综述中,我们将讨论城市水文和雨水管理方法的变化。在不透水的地面和排水基础设施上,约 90% 的降雨变成了径流,加剧了降雨从城市向外输出,导致当地缺水、下游洪水和污染。预计城市人口的增加(到 2050 年城市人口将增加 68%)和降雨强度的增加(在升温 1.5 °C 的情况下,10 年和 50 年重现期降雨强度将增加约 12%)将加剧这些问题。因此,迫切需要改造雨水系统,以减轻洪水风险,同时满足社区对环境保护和加强水安全的愿望。机遇包括雨水花园和其他基于自然的雨水控制措施(可恢复自然流量并提供其他生态系统服务)、智能传感器监测网络和实时管理(可维持自然流量机制、减轻洪水风险并保护生态系统服务)以及雨水收集(可避免当地水资源短缺)。社区对雨水收集的接受程度高达 96%,雨水是一种可观的资源,在世界某些地区,雨水收集量往往超过需求量。要在全球范围内实现更多转变,需要研究激励参与和投资的战略,以及指导分散网络管理的政策。城市化和气候引起的降雨变化正在增加洪水风险,对城市水文管理提出了更高的要求。本综述总结了雨水管理的观念和方法是如何演变的,并强调了将雨水从灾害转变为资源的必要性。
{"title":"Concepts and evolution of urban hydrology","authors":"Tim D. Fletcher, Matthew J. Burns, Kathryn L. Russell, Perrine Hamel, Sophie Duchesne, Frédéric Cherqui, Allison H. Roy","doi":"10.1038/s43017-024-00599-x","DOIUrl":"10.1038/s43017-024-00599-x","url":null,"abstract":"Urbanization and climate change are exacerbating the flood risk and ecosystem degradation in urban catchments, with traditional stormwater management systems often overwhelmed. In this Review, we discuss changes in urban hydrology and approaches to stormwater management. Roughly 90% of rainfall on impervious surfaces and drainage infrastructure becomes run-off, enhancing rainfall export away from cities and leading to local water scarcity and downstream flooding and pollution. Projected increases in urban populations (68% in cities by 2050) and rainfall intensity (~12% in the 10-year and 50-year recurrence interval intensity, under 1.5 °C warming) will exacerbate these issues. Transforming stormwater systems is thus urgently needed, to mitigate flood risk and also to address community desires for environmental protection and enhanced water security. Opportunities include rain gardens and other nature-based stormwater control measures (which restore natural flows and offer other ecosystem services), smart sensor monitoring networks and real-time management (which sustain natural flow regimes, mitigate flood risk and protect ecosystem services) and stormwater harvesting (to avoid local water scarcity). Community acceptance of stormwater harvesting is as high as 96% and stormwater is a substantial resource, with volumes often exceeding demand in some parts of the world. Delivering additional transformations globally requires research into strategies to incentivize engagement and investment, and policies to guide governance of decentralized networks. Urbanization and climate-induced rainfall changes are enhancing flood risk, putting increased demand on urban hydrology management. This Review summarizes how perceptions and approaches in stormwater management are evolving, and emphasizes the need to transform stormwater from a hazard to a resource.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"789-801"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting water beneath ice sheets with satellite altimetry 用卫星测高法探测冰原下的水域
Pub Date : 2024-10-22 DOI: 10.1038/s43017-024-00607-0
Jennifer F. Arthur
Jennifer Arthur explains how satellite altimeters help reveal subglacial hydrology dynamics beneath largely inaccessible subglacial ice-sheet realms.
珍妮弗-阿瑟(Jennifer Arthur)解释了卫星测高仪如何帮助揭示冰川下水文动态,这些水文动态位于基本上无法进入的冰川下冰原领域。
{"title":"Detecting water beneath ice sheets with satellite altimetry","authors":"Jennifer F. Arthur","doi":"10.1038/s43017-024-00607-0","DOIUrl":"10.1038/s43017-024-00607-0","url":null,"abstract":"Jennifer Arthur explains how satellite altimeters help reveal subglacial hydrology dynamics beneath largely inaccessible subglacial ice-sheet realms.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"754-754"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using capacitively coupled resistivity to explore permafrost 利用电容耦合电阻率勘探冻土层
Pub Date : 2024-10-22 DOI: 10.1038/s43017-024-00604-3
Austin Routt
Austin Routt explains how capacitively coupled resistivity can probe near-surface structures in highly resistive frozen ground.
Austin Routt 解释了电容耦合电阻率如何探测高电阻冰冻地面的近地表结构。
{"title":"Using capacitively coupled resistivity to explore permafrost","authors":"Austin Routt","doi":"10.1038/s43017-024-00604-3","DOIUrl":"10.1038/s43017-024-00604-3","url":null,"abstract":"Austin Routt explains how capacitively coupled resistivity can probe near-surface structures in highly resistive frozen ground.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"753-753"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydropower impacts on riverine biodiversity 水力发电对河流生物多样性的影响
Pub Date : 2024-10-14 DOI: 10.1038/s43017-024-00596-0
Fengzhi He  , Christiane Zarfl, Klement Tockner, Julian D. Olden, Zilca Campos, Fábio Muniz, Jens-Christian Svenning, Sonja C. Jähnig
Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making. Hydropower is a renewable energy source that can contribute to growing energy demands. This Review considers the ecological consequences of hydropower plants on riverine systems and emphasizes the urgent need to mitigate ecological impacts to ensure sustainable development.
水力发电是一种快速发展的全球重要可再生能源。在全球范围内,超过 60% 长度超过 500 千米的河流已经支离破碎,在生物多样性热点地区的河流上还拟建数千座水坝。在本《综述》中,我们将讨论水电对河流生态系统中水生和半水生物种的影响,以及这些影响如何在流域的空间和时间上累积。水坝作为物理屏障,破坏了物种的纵向联系和上下游运动。蓄水在大坝上游形成静水生境,导致适应水域的物种减少。间歇性放水改变了下游河道的自然水流、沉积物和热量机制,改变了水质、底质结构和对物种完成生命周期至关重要的环境线索,导致繁殖成功率下降。此外,水库和水流调节的滞留效应改变了河流与洪泛平原之间的水、沉积物和养分交换,改变了河流物种赖以生存的栖息地。改进水流调节、鱼道设计和沉积物重新分布可以减轻这些生态影响。未来的研究应支持大坝运营改革和设计调整,通过系统的流域尺度规划、长期监测、适应性管理和多方参与决策,在可再生能源开发和生物多样性保护之间取得平衡。水电是一种可再生能源,可满足日益增长的能源需求。本报告探讨了水电站对河流系统造成的生态后果,并强调迫切需要减轻对生态的影响,以确保可持续发展。
{"title":"Hydropower impacts on riverine biodiversity","authors":"Fengzhi He \u0000 , Christiane Zarfl, Klement Tockner, Julian D. Olden, Zilca Campos, Fábio Muniz, Jens-Christian Svenning, Sonja C. Jähnig","doi":"10.1038/s43017-024-00596-0","DOIUrl":"10.1038/s43017-024-00596-0","url":null,"abstract":"Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making. Hydropower is a renewable energy source that can contribute to growing energy demands. This Review considers the ecological consequences of hydropower plants on riverine systems and emphasizes the urgent need to mitigate ecological impacts to ensure sustainable development.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"755-772"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine biogeochemical nitrogen cycling through Earth’s history 地球历史上的海洋生物地球化学氮循环
Pub Date : 2024-09-24 DOI: 10.1038/s43017-024-00591-5
Eva E. Stüeken, Alice Pellerin, Christophe Thomazo, Benjamin W. Johnson, Samuel Duncanson, Shane D. Schoepfer
Earth’s marine nitrogen cycle has co-evolved with life and redox conditions over geological time. In this Review, we provide an account of nitrogen cycling in the world’s oceans over the past ~4 Ga, from the dawn of life to the modern day. Stable nitrogen isotopes from sedimentary rocks, paired with other proxies, provide evidence that the nitrogen cycle has responded to and perhaps modulated events such as the emergence of life, oxygenation events, major climatic perturbations, and mass extinction events. Before the evolution of nitrogen fixation, bioavailable nitrogen was supplied via processes such as lightning, photochemical reactions, meteorite impacts and hydrothermalism. The advent of microbial N2 fixation facilitated the expansion of ecosystems. Establishment of a marine nitrate reservoir in the Neoproterozoic (1,000–541 Ma) probably enabled eukaryotic algae to dominate ocean primary productivity. Phanerozoic nitrogen cycle transitions over 100-Myr timescales are associated with icehouse-to-greenhouse conditions. Short-lived perturbations occurred during mass extinctions and anoxic events, which are linked to evolutionary changes, climatic extremes and ocean stagnation. The impact of the terrestrial biosphere on the global marine nitrogen cycle remains poorly resolved and should be addressed in future research to help answer open questions about the spatial and temporal trends in nutrient availability over Earth’s history. The nitrogen cycle is connected to the evolution of Earth and life. This Review explores the trends and perturbations in the marine nitrogen cycle and highlights how the cycle responded and perhaps modulated major events over Earth’s history.
地球的海洋氮循环与生命和氧化还原条件在地质年代中共同演化。在这篇综述中,我们介绍了过去 ~4 Ga(从生命诞生到现代)世界海洋中的氮循环。沉积岩中的稳定氮同位素与其他代用指标相结合,为氮循环提供了证据,证明氮循环对生命的出现、富氧事件、重大气候扰动和大灭绝事件等做出了反应,或许还调节了这些事件。在固氮演化之前,生物可用氮是通过闪电、光化学反应、陨石撞击和热液作用等过程提供的。微生物固氮作用的出现促进了生态系统的扩展。新近纪(1000-541Ma)海洋硝酸盐库的建立可能使真核藻类成为海洋初级生产力的主导。新生代氮循环在 100-Myr 时间尺度上的转变与冰室到温室的条件有关。短期扰动发生在大灭绝和缺氧事件期间,与进化变化、极端气候和海洋停滞有关。陆地生物圈对全球海洋氮循环的影响仍未得到很好的解决,应在今后的研究中加以解决,以帮助回答有关地球历史上养分供应的空间和时间趋势的未决问题。氮循环与地球和生命的演化息息相关。本综述探讨了海洋氮循环的趋势和扰动,并重点介绍了氮循环是如何对地球历史上的重大事件做出反应和调节的。
{"title":"Marine biogeochemical nitrogen cycling through Earth’s history","authors":"Eva E. Stüeken, Alice Pellerin, Christophe Thomazo, Benjamin W. Johnson, Samuel Duncanson, Shane D. Schoepfer","doi":"10.1038/s43017-024-00591-5","DOIUrl":"10.1038/s43017-024-00591-5","url":null,"abstract":"Earth’s marine nitrogen cycle has co-evolved with life and redox conditions over geological time. In this Review, we provide an account of nitrogen cycling in the world’s oceans over the past ~4 Ga, from the dawn of life to the modern day. Stable nitrogen isotopes from sedimentary rocks, paired with other proxies, provide evidence that the nitrogen cycle has responded to and perhaps modulated events such as the emergence of life, oxygenation events, major climatic perturbations, and mass extinction events. Before the evolution of nitrogen fixation, bioavailable nitrogen was supplied via processes such as lightning, photochemical reactions, meteorite impacts and hydrothermalism. The advent of microbial N2 fixation facilitated the expansion of ecosystems. Establishment of a marine nitrate reservoir in the Neoproterozoic (1,000–541 Ma) probably enabled eukaryotic algae to dominate ocean primary productivity. Phanerozoic nitrogen cycle transitions over 100-Myr timescales are associated with icehouse-to-greenhouse conditions. Short-lived perturbations occurred during mass extinctions and anoxic events, which are linked to evolutionary changes, climatic extremes and ocean stagnation. The impact of the terrestrial biosphere on the global marine nitrogen cycle remains poorly resolved and should be addressed in future research to help answer open questions about the spatial and temporal trends in nutrient availability over Earth’s history. The nitrogen cycle is connected to the evolution of Earth and life. This Review explores the trends and perturbations in the marine nitrogen cycle and highlights how the cycle responded and perhaps modulated major events over Earth’s history.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"732-747"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Earth & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1