Pub Date : 2024-11-08DOI: 10.1038/s43017-024-00597-z
Johan Rockström, Jonathan F. Donges, Ingo Fetzer, Maria A. Martin, Lan Wang-Erlandsson, Katherine Richardson
Human pressures have pushed the Earth system deep into the Anthropocene, threatening its stability, resilience and functioning. The Planetary Boundaries (PB) framework emerged against these threats, setting safe levels to the biophysical systems and processes that, with high likelihood, ensure life-supporting Holocene-like conditions. In this Review, we synthesize PB advancements, detailing its emergence and mainstreaming across scientific disciplines and society. The nine PBs capture the key functions regulating the Earth system. The safe operating space has been transgressed for six of these. PB science is essential to prevent further Earth system risks and has sparked new research on the precision of safe boundaries. Human development within planetary boundaries defines sustainable development, informing advances in social sciences. Each PB translates to a finite budget that the world must operate within, requiring strengthened global governance. The PB framework has been adopted by businesses and informed policy across the world, informing new thinking about fundamental justice concerns, and has inspired, among other concepts, the planetary commons, planetary health and doughnut economics. Future work must increase the precision and frequency of PB analyses, and, together with Earth observation data analytics, produce a high-resolution and real-time state of planetary health. The Planetary Boundary (PB) framework — which provides guardrails to maintain the safe operating space for humanity — has received widespread scientific and societal interest. This Review outlines the emergence and mainstreaming of PB thinking, including relevance to Earth system science, justice, governance, economics and sustainability.
{"title":"Planetary Boundaries guide humanity’s future on Earth","authors":"Johan Rockström, Jonathan F. Donges, Ingo Fetzer, Maria A. Martin, Lan Wang-Erlandsson, Katherine Richardson","doi":"10.1038/s43017-024-00597-z","DOIUrl":"10.1038/s43017-024-00597-z","url":null,"abstract":"Human pressures have pushed the Earth system deep into the Anthropocene, threatening its stability, resilience and functioning. The Planetary Boundaries (PB) framework emerged against these threats, setting safe levels to the biophysical systems and processes that, with high likelihood, ensure life-supporting Holocene-like conditions. In this Review, we synthesize PB advancements, detailing its emergence and mainstreaming across scientific disciplines and society. The nine PBs capture the key functions regulating the Earth system. The safe operating space has been transgressed for six of these. PB science is essential to prevent further Earth system risks and has sparked new research on the precision of safe boundaries. Human development within planetary boundaries defines sustainable development, informing advances in social sciences. Each PB translates to a finite budget that the world must operate within, requiring strengthened global governance. The PB framework has been adopted by businesses and informed policy across the world, informing new thinking about fundamental justice concerns, and has inspired, among other concepts, the planetary commons, planetary health and doughnut economics. Future work must increase the precision and frequency of PB analyses, and, together with Earth observation data analytics, produce a high-resolution and real-time state of planetary health. The Planetary Boundary (PB) framework — which provides guardrails to maintain the safe operating space for humanity — has received widespread scientific and societal interest. This Review outlines the emergence and mainstreaming of PB thinking, including relevance to Earth system science, justice, governance, economics and sustainability.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"773-788"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00597-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1038/s43017-024-00600-7
Zhihua Liu, Brendan M. Rogers, Gretchen Keppel-Aleks, Manuel Helbig, Ashley P. Ballantyne, John S. Kimball, Abhishek Chatterjee, Adrianna Foster, Aleya Kaushik, Anna-Maria Virkkala, Arden L. Burrell, Christopher Schwalm, Colm Sweeney, Edward A. G. Schuur, Jacqueline Dean, Jennifer D. Watts, Jinhyuk E. Kim, Jonathan A. Wang, Lei Hu, Lisa Welp, Logan T. Berner, Marguerite Mauritz, Michelle Mack, Nicholas C. Parazoo, Nima Madani, Ralph Keeling, Roisin Commane, Scott Goetz, Shilong Piao, Susan M. Natali, Wenjuan Wang, Wolfgang Buermann, Xanthe Walker, Xin Lin, Xuhui Wang, Yuming Jin, Kailiang Yu, Yangjian Zhang
Global climate change is influencing the seasonal cycle amplitude of atmospheric CO2 (SCA), with the strongest increases at northern high latitudes (NHL; >45° N). In this Review, we explore the changes and underlying mechanisms influencing the NHL SCA, focusing on Arctic and boreal terrestrial ecosystems. Latitudinal gradients in the SCA are largely governed by seasonality in temperature and primary production, and their influence on ecosystem carbon dynamics. In the NHL, the SCA has increased by 50% since the 1960s, mostly due to enhanced seasonality in net carbon dioxide (CO2) exchange in NHL terrestrial ecosystems. Temperature most strongly influences this trend, owing to warming impacts on growing season length and plant productivity; CO2 fertilization effects have a secondary role. Eurasian boreal ecosystems exert the strongest influence on the SCA, and spring and summer are the most influential seasons. Enhanced ecosystem respiration during the non-growing season exhibits most uncertainty in the SCA response to global and landscape drivers. Observed changes in the seasonal amplitude are projected to continue. Key priorities include extending carbon flux and ecosystem observation networks, particularly in tundra ecosystems, and including drivers such as vegetation cover and permafrost in process models to better simulate seasonal dynamics of net CO2 exchange in the NHL. Changes in the seasonal cycle amplitude of atmospheric CO2 (SCA) reflect large-scale changes in the global carbon cycle. This Review summarizes the positive SCA trend in the northern high latitudes, where the signal is strongest, and explores the underlying mechanisms driving the trend and their relative importance.
{"title":"Seasonal CO2 amplitude in northern high latitudes","authors":"Zhihua Liu, Brendan M. Rogers, Gretchen Keppel-Aleks, Manuel Helbig, Ashley P. Ballantyne, John S. Kimball, Abhishek Chatterjee, Adrianna Foster, Aleya Kaushik, Anna-Maria Virkkala, Arden L. Burrell, Christopher Schwalm, Colm Sweeney, Edward A. G. Schuur, Jacqueline Dean, Jennifer D. Watts, Jinhyuk E. Kim, Jonathan A. Wang, Lei Hu, Lisa Welp, Logan T. Berner, Marguerite Mauritz, Michelle Mack, Nicholas C. Parazoo, Nima Madani, Ralph Keeling, Roisin Commane, Scott Goetz, Shilong Piao, Susan M. Natali, Wenjuan Wang, Wolfgang Buermann, Xanthe Walker, Xin Lin, Xuhui Wang, Yuming Jin, Kailiang Yu, Yangjian Zhang","doi":"10.1038/s43017-024-00600-7","DOIUrl":"10.1038/s43017-024-00600-7","url":null,"abstract":"Global climate change is influencing the seasonal cycle amplitude of atmospheric CO2 (SCA), with the strongest increases at northern high latitudes (NHL; >45° N). In this Review, we explore the changes and underlying mechanisms influencing the NHL SCA, focusing on Arctic and boreal terrestrial ecosystems. Latitudinal gradients in the SCA are largely governed by seasonality in temperature and primary production, and their influence on ecosystem carbon dynamics. In the NHL, the SCA has increased by 50% since the 1960s, mostly due to enhanced seasonality in net carbon dioxide (CO2) exchange in NHL terrestrial ecosystems. Temperature most strongly influences this trend, owing to warming impacts on growing season length and plant productivity; CO2 fertilization effects have a secondary role. Eurasian boreal ecosystems exert the strongest influence on the SCA, and spring and summer are the most influential seasons. Enhanced ecosystem respiration during the non-growing season exhibits most uncertainty in the SCA response to global and landscape drivers. Observed changes in the seasonal amplitude are projected to continue. Key priorities include extending carbon flux and ecosystem observation networks, particularly in tundra ecosystems, and including drivers such as vegetation cover and permafrost in process models to better simulate seasonal dynamics of net CO2 exchange in the NHL. Changes in the seasonal cycle amplitude of atmospheric CO2 (SCA) reflect large-scale changes in the global carbon cycle. This Review summarizes the positive SCA trend in the northern high latitudes, where the signal is strongest, and explores the underlying mechanisms driving the trend and their relative importance.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"802-817"},"PeriodicalIF":0.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00600-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1038/s43017-024-00601-6
I. Colin Prentice, Manuela Balzarolo, Keith J. Bloomfield, Jing M. Chen , Benjamin Dechant, Darren Ghent, Ivan A. Janssens, Xiangzhong Luo , Catherine Morfopoulos, Youngryel Ryu, Sara Vicca, Roel van Hoolst
Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially regarding temporal trends in GPP. Many models invoke the light use efficiency principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. However, these models vary in their assumptions about the controls of light use efficiency and typically depend on many, poorly constrained parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, improving the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilizing auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve model-based detection of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux-tower network will support systematic evaluation of GPP models. Improved reliability of GPP and biomass production estimates will better characterize temporal variation and advance understanding of the response of the terrestrial carbon cycle to environmental change. Global patterns and trends in primary production are estimated using remote-sensing-based models. This Perspective outlines ways to ensure that the next generation of model predictions robustly characterizes how this key element of the terrestrial carbon cycle is changing.
{"title":"Principles for satellite monitoring of vegetation carbon uptake","authors":"I. Colin Prentice, Manuela Balzarolo, Keith J. Bloomfield, Jing M. Chen \u0000 , Benjamin Dechant, Darren Ghent, Ivan A. Janssens, Xiangzhong Luo \u0000 , Catherine Morfopoulos, Youngryel Ryu, Sara Vicca, Roel van Hoolst","doi":"10.1038/s43017-024-00601-6","DOIUrl":"10.1038/s43017-024-00601-6","url":null,"abstract":"Remote-sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP) — the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially regarding temporal trends in GPP. Many models invoke the light use efficiency principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. However, these models vary in their assumptions about the controls of light use efficiency and typically depend on many, poorly constrained parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, improving the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilizing auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve model-based detection of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux-tower network will support systematic evaluation of GPP models. Improved reliability of GPP and biomass production estimates will better characterize temporal variation and advance understanding of the response of the terrestrial carbon cycle to environmental change. Global patterns and trends in primary production are estimated using remote-sensing-based models. This Perspective outlines ways to ensure that the next generation of model predictions robustly characterizes how this key element of the terrestrial carbon cycle is changing.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"818-832"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s43017-024-00608-z
Narasimha D. Rao, Ambuj D. Sagar
Cooking with electric rather than solid-fuel stoves can reduce carbon emissions and indoor air pollution, offering climate and health co-benefits. To make electric cooking a viable clean fuel alternative for energy-poor communities, energy infrastructure and policies need redesigning to ensure reliable, safe and affordable supply.
{"title":"Electric cooking as a clean and just energy solution","authors":"Narasimha D. Rao, Ambuj D. Sagar","doi":"10.1038/s43017-024-00608-z","DOIUrl":"10.1038/s43017-024-00608-z","url":null,"abstract":"Cooking with electric rather than solid-fuel stoves can reduce carbon emissions and indoor air pollution, offering climate and health co-benefits. To make electric cooking a viable clean fuel alternative for energy-poor communities, energy infrastructure and policies need redesigning to ensure reliable, safe and affordable supply.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"751-752"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s43017-024-00609-y
Piotr Piotrowski
Construction and demolition waste is the most substantial waste stream in developed countries, prompting policymakers to enhance circularity, recycling and recovery rates. While strategies that simplify deconstruction and promote material reuse are important, prioritizing architectural beauty offers a compelling solution to extend the lifespan of buildings, reduce construction waste and enrich urban environments.
{"title":"Focusing on architectural beauty to reduce construction waste","authors":"Piotr Piotrowski","doi":"10.1038/s43017-024-00609-y","DOIUrl":"10.1038/s43017-024-00609-y","url":null,"abstract":"Construction and demolition waste is the most substantial waste stream in developed countries, prompting policymakers to enhance circularity, recycling and recovery rates. While strategies that simplify deconstruction and promote material reuse are important, prioritizing architectural beauty offers a compelling solution to extend the lifespan of buildings, reduce construction waste and enrich urban environments.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"749-750"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s43017-024-00599-x
Tim D. Fletcher, Matthew J. Burns, Kathryn L. Russell, Perrine Hamel, Sophie Duchesne, Frédéric Cherqui, Allison H. Roy
Urbanization and climate change are exacerbating the flood risk and ecosystem degradation in urban catchments, with traditional stormwater management systems often overwhelmed. In this Review, we discuss changes in urban hydrology and approaches to stormwater management. Roughly 90% of rainfall on impervious surfaces and drainage infrastructure becomes run-off, enhancing rainfall export away from cities and leading to local water scarcity and downstream flooding and pollution. Projected increases in urban populations (68% in cities by 2050) and rainfall intensity (~12% in the 10-year and 50-year recurrence interval intensity, under 1.5 °C warming) will exacerbate these issues. Transforming stormwater systems is thus urgently needed, to mitigate flood risk and also to address community desires for environmental protection and enhanced water security. Opportunities include rain gardens and other nature-based stormwater control measures (which restore natural flows and offer other ecosystem services), smart sensor monitoring networks and real-time management (which sustain natural flow regimes, mitigate flood risk and protect ecosystem services) and stormwater harvesting (to avoid local water scarcity). Community acceptance of stormwater harvesting is as high as 96% and stormwater is a substantial resource, with volumes often exceeding demand in some parts of the world. Delivering additional transformations globally requires research into strategies to incentivize engagement and investment, and policies to guide governance of decentralized networks. Urbanization and climate-induced rainfall changes are enhancing flood risk, putting increased demand on urban hydrology management. This Review summarizes how perceptions and approaches in stormwater management are evolving, and emphasizes the need to transform stormwater from a hazard to a resource.
{"title":"Concepts and evolution of urban hydrology","authors":"Tim D. Fletcher, Matthew J. Burns, Kathryn L. Russell, Perrine Hamel, Sophie Duchesne, Frédéric Cherqui, Allison H. Roy","doi":"10.1038/s43017-024-00599-x","DOIUrl":"10.1038/s43017-024-00599-x","url":null,"abstract":"Urbanization and climate change are exacerbating the flood risk and ecosystem degradation in urban catchments, with traditional stormwater management systems often overwhelmed. In this Review, we discuss changes in urban hydrology and approaches to stormwater management. Roughly 90% of rainfall on impervious surfaces and drainage infrastructure becomes run-off, enhancing rainfall export away from cities and leading to local water scarcity and downstream flooding and pollution. Projected increases in urban populations (68% in cities by 2050) and rainfall intensity (~12% in the 10-year and 50-year recurrence interval intensity, under 1.5 °C warming) will exacerbate these issues. Transforming stormwater systems is thus urgently needed, to mitigate flood risk and also to address community desires for environmental protection and enhanced water security. Opportunities include rain gardens and other nature-based stormwater control measures (which restore natural flows and offer other ecosystem services), smart sensor monitoring networks and real-time management (which sustain natural flow regimes, mitigate flood risk and protect ecosystem services) and stormwater harvesting (to avoid local water scarcity). Community acceptance of stormwater harvesting is as high as 96% and stormwater is a substantial resource, with volumes often exceeding demand in some parts of the world. Delivering additional transformations globally requires research into strategies to incentivize engagement and investment, and policies to guide governance of decentralized networks. Urbanization and climate-induced rainfall changes are enhancing flood risk, putting increased demand on urban hydrology management. This Review summarizes how perceptions and approaches in stormwater management are evolving, and emphasizes the need to transform stormwater from a hazard to a resource.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"789-801"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s43017-024-00596-0
Fengzhi He , Christiane Zarfl, Klement Tockner, Julian D. Olden, Zilca Campos, Fábio Muniz, Jens-Christian Svenning, Sonja C. Jähnig
Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making. Hydropower is a renewable energy source that can contribute to growing energy demands. This Review considers the ecological consequences of hydropower plants on riverine systems and emphasizes the urgent need to mitigate ecological impacts to ensure sustainable development.
{"title":"Hydropower impacts on riverine biodiversity","authors":"Fengzhi He \u0000 , Christiane Zarfl, Klement Tockner, Julian D. Olden, Zilca Campos, Fábio Muniz, Jens-Christian Svenning, Sonja C. Jähnig","doi":"10.1038/s43017-024-00596-0","DOIUrl":"10.1038/s43017-024-00596-0","url":null,"abstract":"Hydropower is a rapidly developing and globally important source of renewable electricity. Globally, over 60% of rivers longer than 500 km are already fragmented and thousands of dams are proposed on rivers in biodiversity hotspots. In this Review, we discuss the impacts of hydropower on aquatic and semi-aquatic species in riverine ecosystems and how these impacts accumulate spatially and temporally across basins. Dams act as physical barriers that disrupt longitudinal connectivity and upstream–downstream movement of species. Impoundment creates still-water habitats upstream of dams and leads to declines in lotic-adapted species. Intermittent water releases modify the natural flow, sediment and thermal regimes in downstream channels, altering water quality, substrate structure and environmental cues that are vital for species to complete their life cycles, resulting in reduced reproduction success. Moreover, retention effects of reservoirs and flow regulation alter river–floodplain exchanges of water, sediment and nutrients, modifying the habitats on which riverine species depend. Improvements to flow regulation, fishway design and sediment redistribution can mitigate these ecological impacts. Future research should support reforms to dam operations and design adaptations to balance renewable electricity development and biodiversity conservation through systematic basin-scale planning, long-term monitoring, adaptive management and involving multiple actors in decision-making. Hydropower is a renewable energy source that can contribute to growing energy demands. This Review considers the ecological consequences of hydropower plants on riverine systems and emphasizes the urgent need to mitigate ecological impacts to ensure sustainable development.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 11","pages":"755-772"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1038/s43017-024-00591-5
Eva E. Stüeken, Alice Pellerin, Christophe Thomazo, Benjamin W. Johnson, Samuel Duncanson, Shane D. Schoepfer
Earth’s marine nitrogen cycle has co-evolved with life and redox conditions over geological time. In this Review, we provide an account of nitrogen cycling in the world’s oceans over the past ~4 Ga, from the dawn of life to the modern day. Stable nitrogen isotopes from sedimentary rocks, paired with other proxies, provide evidence that the nitrogen cycle has responded to and perhaps modulated events such as the emergence of life, oxygenation events, major climatic perturbations, and mass extinction events. Before the evolution of nitrogen fixation, bioavailable nitrogen was supplied via processes such as lightning, photochemical reactions, meteorite impacts and hydrothermalism. The advent of microbial N2 fixation facilitated the expansion of ecosystems. Establishment of a marine nitrate reservoir in the Neoproterozoic (1,000–541 Ma) probably enabled eukaryotic algae to dominate ocean primary productivity. Phanerozoic nitrogen cycle transitions over 100-Myr timescales are associated with icehouse-to-greenhouse conditions. Short-lived perturbations occurred during mass extinctions and anoxic events, which are linked to evolutionary changes, climatic extremes and ocean stagnation. The impact of the terrestrial biosphere on the global marine nitrogen cycle remains poorly resolved and should be addressed in future research to help answer open questions about the spatial and temporal trends in nutrient availability over Earth’s history. The nitrogen cycle is connected to the evolution of Earth and life. This Review explores the trends and perturbations in the marine nitrogen cycle and highlights how the cycle responded and perhaps modulated major events over Earth’s history.
{"title":"Marine biogeochemical nitrogen cycling through Earth’s history","authors":"Eva E. Stüeken, Alice Pellerin, Christophe Thomazo, Benjamin W. Johnson, Samuel Duncanson, Shane D. Schoepfer","doi":"10.1038/s43017-024-00591-5","DOIUrl":"10.1038/s43017-024-00591-5","url":null,"abstract":"Earth’s marine nitrogen cycle has co-evolved with life and redox conditions over geological time. In this Review, we provide an account of nitrogen cycling in the world’s oceans over the past ~4 Ga, from the dawn of life to the modern day. Stable nitrogen isotopes from sedimentary rocks, paired with other proxies, provide evidence that the nitrogen cycle has responded to and perhaps modulated events such as the emergence of life, oxygenation events, major climatic perturbations, and mass extinction events. Before the evolution of nitrogen fixation, bioavailable nitrogen was supplied via processes such as lightning, photochemical reactions, meteorite impacts and hydrothermalism. The advent of microbial N2 fixation facilitated the expansion of ecosystems. Establishment of a marine nitrate reservoir in the Neoproterozoic (1,000–541 Ma) probably enabled eukaryotic algae to dominate ocean primary productivity. Phanerozoic nitrogen cycle transitions over 100-Myr timescales are associated with icehouse-to-greenhouse conditions. Short-lived perturbations occurred during mass extinctions and anoxic events, which are linked to evolutionary changes, climatic extremes and ocean stagnation. The impact of the terrestrial biosphere on the global marine nitrogen cycle remains poorly resolved and should be addressed in future research to help answer open questions about the spatial and temporal trends in nutrient availability over Earth’s history. The nitrogen cycle is connected to the evolution of Earth and life. This Review explores the trends and perturbations in the marine nitrogen cycle and highlights how the cycle responded and perhaps modulated major events over Earth’s history.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 10","pages":"732-747"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}