Interfacial Engineering of BiVO4/Bi2Mo2O9 Heterojunction Toward Photogenerated Carriers Anisotropic Transfer

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS Energy technology Pub Date : 2024-07-16 DOI:10.1002/ente.202400992
Yuli Xiong, Yuting Zhou, Nan Zhou, Bo Peng, Xijun Wei, Zhimin Wu
{"title":"Interfacial Engineering of BiVO4/Bi2Mo2O9 Heterojunction Toward Photogenerated Carriers Anisotropic Transfer","authors":"Yuli Xiong,&nbsp;Yuting Zhou,&nbsp;Nan Zhou,&nbsp;Bo Peng,&nbsp;Xijun Wei,&nbsp;Zhimin Wu","doi":"10.1002/ente.202400992","DOIUrl":null,"url":null,"abstract":"<p>Developing an advanced strategy to decrease the charge recombination of BiVO<sub>4</sub> is a vital requirement to boost charge transfer for photoelectrochemical water oxidation. Herein, a type II BiVO<sub>4</sub>/Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub> heterojunction is successfully synthesized on fluorine-doped tin oxide substrate by successive ionic layer adsorption and reaction method. Thanks to the Fermi-level energy difference of 275 mV between BiVO<sub>4</sub> and Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub>, an outward built-in electric filed pointing from Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub> to BiVO<sub>4</sub> is induced, which accelerates the directional flowing of photogenerated electron and hole. Such a unique design structure fastens the electron migration from BiVO<sub>4</sub> to Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub>, and the holes will transfer to the surface to participate in water oxidation. The longer lifetime (9.2 ns) by time-resolved transient photoluminescence signifies that the Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub> can boost interfacial carriers’ anisotropic migration; the surface charge transfer rate of BiVO<sub>4</sub>/Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub> is up to 387.6 s<sup>−1</sup> (1.4 V vs reversible hydrogen electrode (RHE)). The BiVO<sub>4</sub>/Bi<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub> heterojunction exhibits a remarkable charge separation efficiency of 64% and outstanding photocurrent density of 0.9 mA cm<sup>−2</sup> at 1.23 V versus RHE.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400992","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Developing an advanced strategy to decrease the charge recombination of BiVO4 is a vital requirement to boost charge transfer for photoelectrochemical water oxidation. Herein, a type II BiVO4/Bi2Mo2O9 heterojunction is successfully synthesized on fluorine-doped tin oxide substrate by successive ionic layer adsorption and reaction method. Thanks to the Fermi-level energy difference of 275 mV between BiVO4 and Bi2Mo2O9, an outward built-in electric filed pointing from Bi2Mo2O9 to BiVO4 is induced, which accelerates the directional flowing of photogenerated electron and hole. Such a unique design structure fastens the electron migration from BiVO4 to Bi2Mo2O9, and the holes will transfer to the surface to participate in water oxidation. The longer lifetime (9.2 ns) by time-resolved transient photoluminescence signifies that the Bi2Mo2O9 can boost interfacial carriers’ anisotropic migration; the surface charge transfer rate of BiVO4/Bi2Mo2O9 is up to 387.6 s−1 (1.4 V vs reversible hydrogen electrode (RHE)). The BiVO4/Bi2Mo2O9 heterojunction exhibits a remarkable charge separation efficiency of 64% and outstanding photocurrent density of 0.9 mA cm−2 at 1.23 V versus RHE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向光生载流子各向异性转移的 BiVO4/Bi2Mo2O9 异质结界面工程
开发一种先进的策略来减少 BiVO4 的电荷重组是促进光电化学水氧化电荷转移的一个重要要求。本文通过离子层吸附和反应方法,在掺氟氧化锡衬底上成功合成了 II 型 BiVO4/Bi2Mo2O9 异质结。由于 BiVO4 和 Bi2Mo2O9 之间存在 275 mV 的费米级能差,从而产生了从 Bi2Mo2O9 指向 BiVO4 的外向内置电场,加速了光生电子和空穴的定向流动。这种独特的设计结构加快了电子从 BiVO4 向 Bi2Mo2O9 的迁移,空穴则转移到表面参与水的氧化。通过时间分辨瞬态光致发光,Bi2Mo2O9 的寿命更长(9.2 ns),这表明 Bi2Mo2O9 能够促进界面载流子的各向异性迁移;BiVO4/Bi2Mo2O9 的表面电荷转移速率高达 387.6 s-1 (与可逆氢电极(RHE)相比为 1.4 V)。BiVO4/Bi2Mo2O9 异质结的电荷分离效率高达 64%,在 1.23 V(相对于可逆氢电极)电压下的光电流密度高达 0.9 mA cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
期刊最新文献
Cover Picture Masthead Simulation and Experimental Research on a New Symmetrical Hydraulic Piezoelectric Energy Harvester Theoretical Investigation on Carbazole Derivatives as Charge Carriers for Perovskite Solar Cell Ultrasmall Fe‐Nanoclusters‐Anchored Carbon Polyhedrons Interconnected with Carbon Nanotubes for High‐Performance Zinc‐Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1