Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-07-16 DOI:10.1007/s00396-024-05296-1
Cheng Jian, Yi Yu, Dingze Yu, Ping Chen, Jing Yan, Xuefeng Chen
{"title":"Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells","authors":"Cheng Jian,&nbsp;Yi Yu,&nbsp;Dingze Yu,&nbsp;Ping Chen,&nbsp;Jing Yan,&nbsp;Xuefeng Chen","doi":"10.1007/s00396-024-05296-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Tarim area, characterized by deep reservoirs, high temperatures, and limited fresh water resources, necessitates a fracturing fluid system that exhibits excellent temperature shear resistance, low friction, and salinity tolerance. This study presents the development of a zwitterionic hydrophobic polymer, HPC-5, as an effective thickener using five types of polymeric monomers, including AM, AA, DMC, AMPS, and a non-ionic hydrophobic monomer. The method employed for synthesis was free-radical polymerization in solution. A series of experiments including viscosity measurement with variation of salinity, solubility and drag reduction test, crosslinking test, thermal and shear resistance, sand-carrying test, gel breaking evaluation, and core damage test were conduct under the simulated reservoir conditions. The zwitterionic design imparts great salt tolerance to HPC-5, and the apparent viscosities of HPC-5 solutions can maintain comparably high values with 10×10<sup>4</sup> ppm NaCl and CaCl<sub>2</sub> concentration. Meanwhile, the molecules of HPC-5 associate with each other to form tight net structures, resulting in an excellent viscoelasticity of the solution. To achieve high pump rate during hydraulic fracturing operation in ultra-deep reservoirs, the delayed crosslinking agent ZDC-L was prepared for forming a delayed crosslinking gel fracturing fluid system using reservoir brine, and the drag reduction rate can reach over 70% before crossing link within 4 min. Under pH = 4 conditions, the crosslinking time can be significantly delayed to over 4 min while maintaining exceptional temperature resistance up to 160 ℃ for the gel. These properties make it highly suitable for hydraulic fracturing operations in ultra-deep wells with temperatures reaching up to 7000 m depth at pump rates of 4~5m<sup>3</sup>/min.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1591 - 1601"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05296-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Tarim area, characterized by deep reservoirs, high temperatures, and limited fresh water resources, necessitates a fracturing fluid system that exhibits excellent temperature shear resistance, low friction, and salinity tolerance. This study presents the development of a zwitterionic hydrophobic polymer, HPC-5, as an effective thickener using five types of polymeric monomers, including AM, AA, DMC, AMPS, and a non-ionic hydrophobic monomer. The method employed for synthesis was free-radical polymerization in solution. A series of experiments including viscosity measurement with variation of salinity, solubility and drag reduction test, crosslinking test, thermal and shear resistance, sand-carrying test, gel breaking evaluation, and core damage test were conduct under the simulated reservoir conditions. The zwitterionic design imparts great salt tolerance to HPC-5, and the apparent viscosities of HPC-5 solutions can maintain comparably high values with 10×104 ppm NaCl and CaCl2 concentration. Meanwhile, the molecules of HPC-5 associate with each other to form tight net structures, resulting in an excellent viscoelasticity of the solution. To achieve high pump rate during hydraulic fracturing operation in ultra-deep reservoirs, the delayed crosslinking agent ZDC-L was prepared for forming a delayed crosslinking gel fracturing fluid system using reservoir brine, and the drag reduction rate can reach over 70% before crossing link within 4 min. Under pH = 4 conditions, the crosslinking time can be significantly delayed to over 4 min while maintaining exceptional temperature resistance up to 160 ℃ for the gel. These properties make it highly suitable for hydraulic fracturing operations in ultra-deep wells with temperatures reaching up to 7000 m depth at pump rates of 4~5m3/min.

Graphical abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超深高温井中耐盐延迟交联压裂液体系的合成与评估
塔里木地区储层深、温度高、淡水资源有限,因此需要一种具有出色的耐温剪切性、低摩擦性和耐盐性的压裂液体系。本研究利用五种聚合物单体(包括 AM、AA、DMC、AMPS 和一种非离子疏水单体),开发了一种有效的增稠剂--齐聚物疏水聚合物 HPC-5。合成方法是在溶液中进行自由基聚合。在模拟储层条件下进行了一系列试验,包括随盐度变化的粘度测量、溶解度和阻力降低试验、交联试验、耐热性和耐剪切性、携砂试验、凝胶破裂评估和岩心损害试验。HPC-5的齐聚物设计赋予其极强的耐盐性,在10×104 ppm的NaCl和CaCl2浓度下,HPC-5溶液的表观粘度仍能保持相当高的数值。同时,HPC-5 分子之间相互结合形成紧密的网状结构,从而使溶液具有极佳的粘弹性。为了在超深储层水力压裂作业中实现高泵率,制备了延迟交联剂 ZDC-L,利用储层盐水形成延迟交联凝胶压裂液体系,在 4 分钟内,交联前的阻力降低率可达 70% 以上。在 pH = 4 的条件下,交联时间可显著延迟至 4 分钟以上,同时凝胶还能保持优异的耐温性,最高可达 160 ℃。这些特性使其非常适合在温度高达 7000 米、泵速为 4~5m3/min 的超深井中进行水力压裂作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
Cellulose regenerated films obtained from the dissolution of cotton waste in ionic liquid Study on the efficient precipitation of germanium by Fe(OH)3 colloid generated by neutralization precipitation method Study on oil-in-water emulsions stabilized by SiO2 nanoparticles for enhancing oil recovery in harsh reservoirs A comparative experimental work on the drop-weight impact responses of thermoplastic polymers produced by additive manufacturing: combined influence of infill rate, test temperature, and filament material Multicompartment microparticles of SBM triblock terpolymers: Morphological transitions through homopolymer blending
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1