Highly sensitive MXene-based SO2 sensor enhanced by modification of SnO2 at room temperature

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2024-07-16 DOI:10.1007/s13204-024-03061-y
Rui Wu, Weiwei Chen, Shuxian Liao, Jiayong Yin, Ziqing Yuan, Haoran Han, Xiangyu Liao, Yong Zhang, Yongbiao Zhai, Liangchao Guo
{"title":"Highly sensitive MXene-based SO2 sensor enhanced by modification of SnO2 at room temperature","authors":"Rui Wu,&nbsp;Weiwei Chen,&nbsp;Shuxian Liao,&nbsp;Jiayong Yin,&nbsp;Ziqing Yuan,&nbsp;Haoran Han,&nbsp;Xiangyu Liao,&nbsp;Yong Zhang,&nbsp;Yongbiao Zhai,&nbsp;Liangchao Guo","doi":"10.1007/s13204-024-03061-y","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance and room-temperature gas sensors are ideal for industrial production and environmental detection. Enhancing gas-detection capability by the use of highly conductive MXene in conjunction with metal oxide materials is a potential approach. In this work, we have prepared a gas-sensing composite device based on SnO<sub>2</sub>/V<sub>2</sub>CT<sub>x</sub> nanocomposites, which can be used to detect the concentration of SO<sub>2</sub> gas at room temperature (~ 20 ℃). This paper modified two-dimensional (2D) V<sub>2</sub>CT<sub>x</sub> MXene with SnO<sub>2</sub> nanoparticles by electrostatic binding method to synthesize SnO<sub>2</sub>/V<sub>2</sub>CT<sub>x</sub> composite nanomaterials. The experimental results show that at room temperature, the addition of SnO<sub>2</sub> nanoparticles can markedly improve the gas-sensing response (from 66 to 83%) characteristics of pure V<sub>2</sub>CT<sub>x</sub> to SO<sub>2</sub>. The gas sensitivity of SnO<sub>2</sub>/V<sub>2</sub>CT<sub>x</sub> MXene nanocomposites can reach 83%, and its response/recovery time is 98 s/81 s under 10 ppm SO<sub>2</sub>. The gas-sensing composite devices made of SnO<sub>2</sub>/V<sub>2</sub>CT<sub>x</sub> composite nanomaterials also show good selectivity and application prospects.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 9","pages":"973 - 983"},"PeriodicalIF":3.6740,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03061-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance and room-temperature gas sensors are ideal for industrial production and environmental detection. Enhancing gas-detection capability by the use of highly conductive MXene in conjunction with metal oxide materials is a potential approach. In this work, we have prepared a gas-sensing composite device based on SnO2/V2CTx nanocomposites, which can be used to detect the concentration of SO2 gas at room temperature (~ 20 ℃). This paper modified two-dimensional (2D) V2CTx MXene with SnO2 nanoparticles by electrostatic binding method to synthesize SnO2/V2CTx composite nanomaterials. The experimental results show that at room temperature, the addition of SnO2 nanoparticles can markedly improve the gas-sensing response (from 66 to 83%) characteristics of pure V2CTx to SO2. The gas sensitivity of SnO2/V2CTx MXene nanocomposites can reach 83%, and its response/recovery time is 98 s/81 s under 10 ppm SO2. The gas-sensing composite devices made of SnO2/V2CTx composite nanomaterials also show good selectivity and application prospects.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温下通过改性二氧化锡增强的高灵敏度 MXene 基二氧化硫传感器
高性能室温气体传感器是工业生产和环境检测的理想选择。通过将高导电性 MXene 与金属氧化物材料结合使用来增强气体检测能力是一种可行的方法。在这项工作中,我们制备了一种基于 SnO2/V2CTx 纳米复合材料的气体传感复合器件,可用于检测室温(~ 20 ℃)下的二氧化硫气体浓度。本文通过静电结合的方法将二维(2D)V2CTx MXene与SnO2纳米粒子修饰,合成了SnO2/V2CTx复合纳米材料。实验结果表明,在室温条件下,SnO2 纳米粒子的加入能明显改善纯 V2CTx 对二氧化硫的气敏响应特性(从 66% 提高到 83%)。SnO2/V2CTx MXene 纳米复合材料的气体灵敏度可达 83%,在 10 ppm 二氧化硫条件下的响应/恢复时间分别为 98 秒/81 秒。由 SnO2/V2CTx 复合纳米材料制成的气体传感复合器件也显示出良好的选择性和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
Exploring mechanical, wear, and corrosion characteristics of Al–Si–Mg nano-composites reinforced with nano-silicon dioxide and tungsten carbide Agro-environmental influence and interaction of nanoparticles (CuO, Fe3O4, Fe3O4@CuO) on microorganisms causing illnesses of tomato root and stems Environmental protection and performance enhancement of hydrocarbon compressor based vapour compression refrigeration system using dry powder SiO2 nanoparticles: an experimental analysis Antimicrobial silver nanoparticles derived from Synadenium glaucescens exhibit significant ecotoxicological impact in waste stabilization ponds ZnO mesoscale nanoparticles photoluminescence obtained by green synthesis based on Beaucarnea gracilis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1