{"title":"Blowup Criterion for Viscous Non-baratropic Flows with Zero Heat Conduction Involving Velocity Divergence","authors":"Yongfu Wang","doi":"10.1007/s00021-024-00887-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove that the maximum norm of velocity divergence controls the breakdown of smooth (strong) solutions to the two-dimensional (2D) Cauchy problem of the full compressible Navier–Stokes equations with zero heat conduction. The results indicate that the nature of the blowup for the full compressible Navier–Stokes equations with zero heat conduction of viscous flow is similar to the barotropic compressible Navier–Stokes equations and does not depend on the temperature field. The main ingredient of the proof is a priori estimate to the pressure field instead of the temperature field and weighted energy estimates under the assumption that velocity divergence remains bounded. Furthermore, the initial vacuum states are allowed, and the viscosity coefficients are only restricted by the physical conditions.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00887-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove that the maximum norm of velocity divergence controls the breakdown of smooth (strong) solutions to the two-dimensional (2D) Cauchy problem of the full compressible Navier–Stokes equations with zero heat conduction. The results indicate that the nature of the blowup for the full compressible Navier–Stokes equations with zero heat conduction of viscous flow is similar to the barotropic compressible Navier–Stokes equations and does not depend on the temperature field. The main ingredient of the proof is a priori estimate to the pressure field instead of the temperature field and weighted energy estimates under the assumption that velocity divergence remains bounded. Furthermore, the initial vacuum states are allowed, and the viscosity coefficients are only restricted by the physical conditions.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.