Hongfeng Tao, Yuechang Zheng, Yue Wang, Jier Qiu, Stojanovic Vladimir
{"title":"Enhanced Feature Extraction YOLO Industrial Small Object Detection Algorithm based on Receptive-Field Attention and Multi-scale Features","authors":"Hongfeng Tao, Yuechang Zheng, Yue Wang, Jier Qiu, Stojanovic Vladimir","doi":"10.1088/1361-6501/ad633d","DOIUrl":null,"url":null,"abstract":"\n To guarantee the stability and safety of industrial production, it is necessary to regulate the behavior of employees. However, the high background complexity, low pixel count, occlusion and fuzzy appearance can result in a high leakage rate and poor detection accuracy of small objects. Considering the above problems, this paper proposes the EFE-YOLO (Enhanced feature extraction-You Only Look Once) algorithm to improve the detection of industrial small objects. To enhance the detection of fuzzy and occluded objects, the PSRFA (PixelShuffle and Receptive-Field Attention) upsampling module is designed to preserve and reconstruct more detailed information and extract the receptive-field attention weights. Furthermore, the MSE (multi-scale and efficient) downsampling module is designed to merge global and local semantic features to alleviate the problem of false and missed detection. Subsequently, the AFAF (Adaptive Feature Adjustment and Fusion) module is designed to highlight the important features and suppress background information that is not beneficial for detection. Finally, the EIoU loss function is used to improve the convergence speed and localization accuracy. All experiments are conducted on homemade dataset. The improved YOLOv5 algorithm proposed in this paper improves mAP@0.50 (mean average precision at a threshold of 0.50) by 2.8\\% compared to the YOLOv5 algorithm. The average precision and recall of small objects show an improvement of 8.1\\% and 7.5\\%, respectively. The detection performance is still leading in comparison with other advanced algorithms.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad633d","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To guarantee the stability and safety of industrial production, it is necessary to regulate the behavior of employees. However, the high background complexity, low pixel count, occlusion and fuzzy appearance can result in a high leakage rate and poor detection accuracy of small objects. Considering the above problems, this paper proposes the EFE-YOLO (Enhanced feature extraction-You Only Look Once) algorithm to improve the detection of industrial small objects. To enhance the detection of fuzzy and occluded objects, the PSRFA (PixelShuffle and Receptive-Field Attention) upsampling module is designed to preserve and reconstruct more detailed information and extract the receptive-field attention weights. Furthermore, the MSE (multi-scale and efficient) downsampling module is designed to merge global and local semantic features to alleviate the problem of false and missed detection. Subsequently, the AFAF (Adaptive Feature Adjustment and Fusion) module is designed to highlight the important features and suppress background information that is not beneficial for detection. Finally, the EIoU loss function is used to improve the convergence speed and localization accuracy. All experiments are conducted on homemade dataset. The improved YOLOv5 algorithm proposed in this paper improves mAP@0.50 (mean average precision at a threshold of 0.50) by 2.8\% compared to the YOLOv5 algorithm. The average precision and recall of small objects show an improvement of 8.1\% and 7.5\%, respectively. The detection performance is still leading in comparison with other advanced algorithms.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.