Xuan Zhang, Huali Tong, Ling Zhao, Enwei Huang, Guofeng Zhu
{"title":"Spatial and Temporal Dynamics and Multi-Scenario Forecasting of Habitat Quality in Gansu–Qinghai Contiguous Region of the Upper Yellow River","authors":"Xuan Zhang, Huali Tong, Ling Zhao, Enwei Huang, Guofeng Zhu","doi":"10.3390/land13071060","DOIUrl":null,"url":null,"abstract":"Human activities exert a profound influence on land use and land cover, and these changes directly influence habitat quality and ecosystem functioning. In the Gansu–Qinghai contiguous region of the upper Yellow River, habitat quality has undergone substantial transformations in recent years due to the synergistic impacts of natural processes and human intervention. Therefore, evaluating the effects of land use changes on habitat quality is crucial for advancing regional sustainable development and improving the worth of ecosystem services. In response to these challenges, we devised a two-pronged approach: a land use simulation (FLUS) model and an integrated valuation of ecosystem services and trade-offs (InVEST) model, leveraging remote sensing data. This integrated methodology establishes a research framework for the evaluation and simulation of spatial and temporal variations in habitat quality. The results of the study show that, firstly, from 1980 to 2020, the habitat quality index in the Gansu–Qinghai contiguous region of the upper Yellow River decreased from 0.8528 to 0.8434. Secondly, our predictions anticipate a decrease in habitat quality, although the decline is not pronounced across all scenarios. The highest habitat quality values were projected under the EP (Ecology Priority) scenario, followed by the CLP (Cultivated Land Priority) scenario, while the BAU (Business as Usual) scenario consistently yielded the lowest values in all three scenarios. Finally, the ecological land, including forest land and grassland, consistently occupied areas characterized by high habitat quality. In contrast, Construction land consistently appeared in regions associated with low habitat quality. The implementation of conservation measures emerges as a crucial strategy, effectively limiting the expansion of construction land and promoting the augmentation of forest land and grassland cover. This approach serves to enhance overall habitat quality. These outcomes furnish a scientific foundation for the judicious formulation of future land-use policies and ecological protection measures.","PeriodicalId":508186,"journal":{"name":"Land","volume":"62 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/land13071060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human activities exert a profound influence on land use and land cover, and these changes directly influence habitat quality and ecosystem functioning. In the Gansu–Qinghai contiguous region of the upper Yellow River, habitat quality has undergone substantial transformations in recent years due to the synergistic impacts of natural processes and human intervention. Therefore, evaluating the effects of land use changes on habitat quality is crucial for advancing regional sustainable development and improving the worth of ecosystem services. In response to these challenges, we devised a two-pronged approach: a land use simulation (FLUS) model and an integrated valuation of ecosystem services and trade-offs (InVEST) model, leveraging remote sensing data. This integrated methodology establishes a research framework for the evaluation and simulation of spatial and temporal variations in habitat quality. The results of the study show that, firstly, from 1980 to 2020, the habitat quality index in the Gansu–Qinghai contiguous region of the upper Yellow River decreased from 0.8528 to 0.8434. Secondly, our predictions anticipate a decrease in habitat quality, although the decline is not pronounced across all scenarios. The highest habitat quality values were projected under the EP (Ecology Priority) scenario, followed by the CLP (Cultivated Land Priority) scenario, while the BAU (Business as Usual) scenario consistently yielded the lowest values in all three scenarios. Finally, the ecological land, including forest land and grassland, consistently occupied areas characterized by high habitat quality. In contrast, Construction land consistently appeared in regions associated with low habitat quality. The implementation of conservation measures emerges as a crucial strategy, effectively limiting the expansion of construction land and promoting the augmentation of forest land and grassland cover. This approach serves to enhance overall habitat quality. These outcomes furnish a scientific foundation for the judicious formulation of future land-use policies and ecological protection measures.