Emiliano Borri, Svetlana Ushak, Yongliang Li, Andrea Frazzica, Yannan Zhang, Yanio E. Milian, Mario Grageda, Dacheng Li, Luisa F. Cabeza, Vincenza Brancato
{"title":"Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review","authors":"Emiliano Borri, Svetlana Ushak, Yongliang Li, Andrea Frazzica, Yannan Zhang, Yanio E. Milian, Mario Grageda, Dacheng Li, Luisa F. Cabeza, Vincenza Brancato","doi":"10.1007/s40243-024-00268-5","DOIUrl":null,"url":null,"abstract":"<div><p>The energy consumption for cooling takes up 50% of all the consumed final energy in Europe, which still highly depends on the utilization of fossil fuels. Thus, it is required to propose and develop new technologies for cooling driven by renewable energy. Also, thermal energy storage is an emerging technology to relocate intermittent low-grade heat source, like solar thermal energy and industrial waste heat as well as to exploit off-peak electricity, for cooling applications. This review aims to summarize the recent advances in thermally driven cooling and cold storage technologies, focusing on the formation and fabrication of adopted composites materials, including sorption materials, phase change materials, and slurries. Herein, first the classifications, selection criteria, and properties for these three types of materials is discussed. Then, the application potentials of all the materials are prospected in terms of economic analysis and sustainability.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"333 - 360"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00268-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00268-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The energy consumption for cooling takes up 50% of all the consumed final energy in Europe, which still highly depends on the utilization of fossil fuels. Thus, it is required to propose and develop new technologies for cooling driven by renewable energy. Also, thermal energy storage is an emerging technology to relocate intermittent low-grade heat source, like solar thermal energy and industrial waste heat as well as to exploit off-peak electricity, for cooling applications. This review aims to summarize the recent advances in thermally driven cooling and cold storage technologies, focusing on the formation and fabrication of adopted composites materials, including sorption materials, phase change materials, and slurries. Herein, first the classifications, selection criteria, and properties for these three types of materials is discussed. Then, the application potentials of all the materials are prospected in terms of economic analysis and sustainability.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies