Xin Li, Zhiqin Ying, Xuezhen Wang, Yuheng Zeng, Xi Yang, Jichun Ye
{"title":"How to enable highly efficient and large‐area fabrication on specific textures for monolithic perovskite/silicon tandem solar cells?","authors":"Xin Li, Zhiqin Ying, Xuezhen Wang, Yuheng Zeng, Xi Yang, Jichun Ye","doi":"10.1002/ifm2.18","DOIUrl":null,"url":null,"abstract":"Perovskite/silicon tandem solar cells (PVSK/Si TSCs) have emerged as a promising photovoltaic technology toward achieving a high power conversion efficiency (PCE) along with cost‐effective manufacturing. The PCE of PVSK/Si TSCs has skyrocketed to a certified 33.9%, surpassing the theoretical limit of any single‐junction solar cell. This achievement is partially attributed to advancements in surface textures for Si bottom cells. In this regard, we present an overview of the recent developments concerning surface textures of Si in monolithic PVSK/Si TSCs, including planar, pyramid texture, and nanotexture. Following, the prevailing perovskite deposition methods on these textures are thoroughly discussed, and the corresponding challenges are evaluated. Additionally, we provide a summary of the advanced morphological, structural, optical, and electrical characterization techniques being utilized for theses textures. Finally, the prospects for further development of PVSK/Si TSCs are outlined, including designing novel textures with industrial compatibility, developing perovskite deposition methods with scalability, and exploring more pertinent characterization techniques for textured PVSK/Si TSCs.","PeriodicalId":517633,"journal":{"name":"Information & Functional Materials","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ifm2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite/silicon tandem solar cells (PVSK/Si TSCs) have emerged as a promising photovoltaic technology toward achieving a high power conversion efficiency (PCE) along with cost‐effective manufacturing. The PCE of PVSK/Si TSCs has skyrocketed to a certified 33.9%, surpassing the theoretical limit of any single‐junction solar cell. This achievement is partially attributed to advancements in surface textures for Si bottom cells. In this regard, we present an overview of the recent developments concerning surface textures of Si in monolithic PVSK/Si TSCs, including planar, pyramid texture, and nanotexture. Following, the prevailing perovskite deposition methods on these textures are thoroughly discussed, and the corresponding challenges are evaluated. Additionally, we provide a summary of the advanced morphological, structural, optical, and electrical characterization techniques being utilized for theses textures. Finally, the prospects for further development of PVSK/Si TSCs are outlined, including designing novel textures with industrial compatibility, developing perovskite deposition methods with scalability, and exploring more pertinent characterization techniques for textured PVSK/Si TSCs.