Role of complexity on the minimal deformation of black holes

Z. Yousaf, K. Bamba, Bander Almutairi, S. Khan, M. Z. Bhatti
{"title":"Role of complexity on the minimal deformation of black holes","authors":"Z. Yousaf, K. Bamba, Bander Almutairi, S. Khan, M. Z. Bhatti","doi":"10.1088/1361-6382/ad6389","DOIUrl":null,"url":null,"abstract":"\n We investigate spherically symmetric classes of anisotropic solutions within the realm of a schematic gravitational decoupling scheme, primarily decoupling through minimal geometric deformation, applied to non-rotating, ultra-compact, self-gravitational fluid distributions. In this respect, we employ the minimal complexity factor scheme to generate physically realistic models for anisotropic matter distributions, using a well-behaved model. The zero-complexity factor condition enables us to determine the deformation function for solving the decoupled system. We explore all the structure-defining scalar variables, such as density inhomogeneity, strong energy condition, density homogeneity, and the complexity factor (an alloy of density inhomogeneity and pressure anisotropy) for the decoupling constant ranging between $0$ and $1$. We observe that the anisotropy vanishes when the coupling constant is set to unity. This finding holds significance as it implies that, in the context of a zero-complexity factor approach, an anisotropic matter distribution becomes perfect without requiring any isotropy requirements. This work effectively explored the impact of complexity on the composition of self-gravitational stellar distributions. This effective approach enables the development of new, physically realistic isotropic stellar models for anisotropic matter distributions. Additionally, our findings indicate that the complexity factor in static, spherically symmetric self-gravitational objects can significantly affect the nature of the matter distribution within these systems. It is concluded that the minimally deformed Durgapal-IV model features an increasing pressure profile, and the local anisotropy of pressure vanishes throughout the model under complexity-free conditions.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":"50 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad6389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate spherically symmetric classes of anisotropic solutions within the realm of a schematic gravitational decoupling scheme, primarily decoupling through minimal geometric deformation, applied to non-rotating, ultra-compact, self-gravitational fluid distributions. In this respect, we employ the minimal complexity factor scheme to generate physically realistic models for anisotropic matter distributions, using a well-behaved model. The zero-complexity factor condition enables us to determine the deformation function for solving the decoupled system. We explore all the structure-defining scalar variables, such as density inhomogeneity, strong energy condition, density homogeneity, and the complexity factor (an alloy of density inhomogeneity and pressure anisotropy) for the decoupling constant ranging between $0$ and $1$. We observe that the anisotropy vanishes when the coupling constant is set to unity. This finding holds significance as it implies that, in the context of a zero-complexity factor approach, an anisotropic matter distribution becomes perfect without requiring any isotropy requirements. This work effectively explored the impact of complexity on the composition of self-gravitational stellar distributions. This effective approach enables the development of new, physically realistic isotropic stellar models for anisotropic matter distributions. Additionally, our findings indicate that the complexity factor in static, spherically symmetric self-gravitational objects can significantly affect the nature of the matter distribution within these systems. It is concluded that the minimally deformed Durgapal-IV model features an increasing pressure profile, and the local anisotropy of pressure vanishes throughout the model under complexity-free conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂性对黑洞最小变形的作用
我们研究了各向异性解决方案的球面对称类,该类解决方案属于引力解耦方案的范畴,主要是通过最小几何变形解耦,适用于非旋转、超紧凑、自引力流体分布。在这方面,我们采用了最小复杂系数方案,利用一个良好的模型,为各向异性物质分布生成物理上现实的模型。零复杂因子条件使我们能够确定求解解耦系统的变形函数。我们探索了解耦常数在 0 美元到 1 美元之间的所有结构定义标量变量,如密度不均匀性、强能量条件、密度均匀性和复杂性因子(密度不均匀性和压力各向异性的合金)。我们发现,当耦合常数设为 1 时,各向异性消失了。这一发现具有重要意义,因为它意味着在零复杂性因子方法中,各向异性物质分布变得完美,而不需要任何各向同性要求。这项工作有效地探索了复杂性对自引力恒星分布组成的影响。这种有效的方法能够为各向异性物质分布开发出新的、物理上现实的各向同性恒星模型。此外,我们的研究结果表明,静态球对称自引力天体的复杂性因素会显著影响这些系统内物质分布的性质。结论是,最小变形的杜尔加帕尔-IV 模型具有不断增大的压力曲线,在无复杂性条件下,压力的局部各向异性在整个模型中消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring the evolution of optical coatings during thermal annealing with real-time, in situ spectroscopic ellipsometry A relativistic scalar model for fractional interaction between dark matter and gravity Imprints of the operator ordering ambiguity on the dynamics of perfect fluid dominated quantum universe Role of complexity on the minimal deformation of black holes Axialgravisolitons at infinite corner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1