Ana Barbosa Aguiar, Michael J. Bell, E. Blockley, D. Calvert, Richard Crocker, G. Inverarity, Robert R. King, D. Lea, Jan Maksymczuk, Matthew J. Martin, Martin R. Price, J. Siddorn, Kerry Smout-Day, Jennifer Waters, J. While
{"title":"The Met Office Forecast Ocean Assimilation Model (FOAM) using a 1/12‐degree grid for global forecasts","authors":"Ana Barbosa Aguiar, Michael J. Bell, E. Blockley, D. Calvert, Richard Crocker, G. Inverarity, Robert R. King, D. Lea, Jan Maksymczuk, Matthew J. Martin, Martin R. Price, J. Siddorn, Kerry Smout-Day, Jennifer Waters, J. While","doi":"10.1002/qj.4798","DOIUrl":null,"url":null,"abstract":"The Met Office Forecast Ocean Assimilation Model (FOAM) ocean–sea‐ice analysis and forecasting operational system has been using an ORCA tripolar grid with 1/4° horizontal grid spacing since December 2008. Surface boundary forcing is provided by numerical weather prediction fields from the operational global atmosphere Met Office Unified Model. We present results from a 2‐year simulation using a 1/12° global ocean–sea‐ice model configuration while keeping a 1/4° data assimilation (DA) set‐up. We also describe recent operational data assimilation enhancements that are included in our 1/4° control and 1/12° simulations: a new bias‐correction term for sea‐level anomaly assimilation and a revised pressure correction algorithm. The primary effect of the first is to decrease the mean and variability of sea‐level anomaly increments at high latitudes, whereas the second significantly reduces the vertical velocity standard deviation in the tropical Pacific. The level of improvement achieved with the higher resolution configuration is moderate but consistently satisfactory when measured using neighbourhood verification metrics that provide fairer quantitative comparisons between gridded model fields at different spatial resolutions than traditional root‐mean‐square metrics. A comparison of the eddy kinetic energy from each configuration and an observation‐based product highlights the regions where further system developments are most needed.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4798","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
The Met Office Forecast Ocean Assimilation Model (FOAM) ocean–sea‐ice analysis and forecasting operational system has been using an ORCA tripolar grid with 1/4° horizontal grid spacing since December 2008. Surface boundary forcing is provided by numerical weather prediction fields from the operational global atmosphere Met Office Unified Model. We present results from a 2‐year simulation using a 1/12° global ocean–sea‐ice model configuration while keeping a 1/4° data assimilation (DA) set‐up. We also describe recent operational data assimilation enhancements that are included in our 1/4° control and 1/12° simulations: a new bias‐correction term for sea‐level anomaly assimilation and a revised pressure correction algorithm. The primary effect of the first is to decrease the mean and variability of sea‐level anomaly increments at high latitudes, whereas the second significantly reduces the vertical velocity standard deviation in the tropical Pacific. The level of improvement achieved with the higher resolution configuration is moderate but consistently satisfactory when measured using neighbourhood verification metrics that provide fairer quantitative comparisons between gridded model fields at different spatial resolutions than traditional root‐mean‐square metrics. A comparison of the eddy kinetic energy from each configuration and an observation‐based product highlights the regions where further system developments are most needed.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.