{"title":"Modeling of isothermal supersaturation of solutions in a porous medium: estimation of it’s possible degree","authors":"Nikolay A. Tikhonov","doi":"10.1007/s10910-024-01648-y","DOIUrl":null,"url":null,"abstract":"<div><p>The phenomenon of isothermal supersaturation of solutions in a porous medium at ion exchange is studied on the basis of mathematical modeling. The phenomenon consists in the fact that the solution with concentration significantly higher than the maximal solubility of the substance is formed in the pores of sorbent and no precipitation occurs. The question of why sediment does not appear in the pores between the grains is investigated in the article. It is shown that the phenomenon under consideration can be explained by the effect of dynamic equilibrium between the association of condensed phase particles in the inner part of the pores, their diffusion, and decomposition near the surface of the sorbent grains caused by a change in potential. The degree of possible supersaturation of the solution is estimated depending on the process parameters. The proposed hypothesis is confirmed by quantitative studies using the available experimental data.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 9","pages":"2289 - 2303"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01648-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomenon of isothermal supersaturation of solutions in a porous medium at ion exchange is studied on the basis of mathematical modeling. The phenomenon consists in the fact that the solution with concentration significantly higher than the maximal solubility of the substance is formed in the pores of sorbent and no precipitation occurs. The question of why sediment does not appear in the pores between the grains is investigated in the article. It is shown that the phenomenon under consideration can be explained by the effect of dynamic equilibrium between the association of condensed phase particles in the inner part of the pores, their diffusion, and decomposition near the surface of the sorbent grains caused by a change in potential. The degree of possible supersaturation of the solution is estimated depending on the process parameters. The proposed hypothesis is confirmed by quantitative studies using the available experimental data.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.