Optimizing CO2 Purification in a Negative CO2 Emission Power Plant

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-07-14 DOI:10.1002/ceat.202300568
Milad Amiri, Jarosław Mikielewicz, Paweł Ziółkowski, Dariusz Mikielewicz
{"title":"Optimizing CO2 Purification in a Negative CO2 Emission Power Plant","authors":"Milad Amiri,&nbsp;Jarosław Mikielewicz,&nbsp;Paweł Ziółkowski,&nbsp;Dariusz Mikielewicz","doi":"10.1002/ceat.202300568","DOIUrl":null,"url":null,"abstract":"<p>In the pursuit of mitigating CO<sub>2</sub> emissions, this study investigates the optimization of CO<sub>2</sub> purification within a negative CO<sub>2</sub> emission power plant using a spray ejector condenser (SEC) coupled with a separator. The approach involves direct-contact condensation of vapor, primarily composed of an inert gas (CO<sub>2</sub>), facilitated by a subcooled liquid spray. A comprehensive analysis is presented, employing a numerical model to simulate a cyclone separator under various SEC outlet conditions. Methodologically, the simulation, conducted in Fluent, encompasses three-dimensional, transient, and turbulent characteristics using the Reynolds stress model turbulent model and mixture model to replicate the turbulent two-phase flow within a gas–liquid separator. Structural considerations are delved into, evaluating the efficacy of single- and dual-inlet separators to enhance CO<sub>2</sub> purification efficiency. The study reveals significant insights into the optimization process, highlighting a notable enhancement in separation efficiency within the dual-inlet cyclone, compared to its single inlet counterpart. Specifically, a 90.7 % separation efficiency is observed in the former, characterized by symmetrical flow patterns devoid of wavering CO<sub>2</sub> cores, whereas the latter exhibits less desirable velocity vectors. Furthermore, the investigation explores the influence of key parameters, such as liquid volume fraction (LVF) and water droplet diameter, on separation efficiency. It is ascertained that a 10 % LVF with a water droplet diameter of 10 µm yields the highest separation efficiency at 90.7 %, whereas a 20 % LVF with a water droplet diameter of 1 µm results in a reduced efficiency of 50.79 %. Moreover, the impact of structural modifications, such as the addition of vanes, on separation efficiency and pressure drop is explored. Remarkably, the incorporation of vanes leads to a 9.2 % improvement in separation efficiency and a 16.8 % reduction in pressure drop at a 10 % LVF. The findings underscore the significance of structural considerations and parameter optimization in advancing CO<sub>2</sub> capture technologies, with implications for sustainable energy production and environmental conservation.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300568","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of mitigating CO2 emissions, this study investigates the optimization of CO2 purification within a negative CO2 emission power plant using a spray ejector condenser (SEC) coupled with a separator. The approach involves direct-contact condensation of vapor, primarily composed of an inert gas (CO2), facilitated by a subcooled liquid spray. A comprehensive analysis is presented, employing a numerical model to simulate a cyclone separator under various SEC outlet conditions. Methodologically, the simulation, conducted in Fluent, encompasses three-dimensional, transient, and turbulent characteristics using the Reynolds stress model turbulent model and mixture model to replicate the turbulent two-phase flow within a gas–liquid separator. Structural considerations are delved into, evaluating the efficacy of single- and dual-inlet separators to enhance CO2 purification efficiency. The study reveals significant insights into the optimization process, highlighting a notable enhancement in separation efficiency within the dual-inlet cyclone, compared to its single inlet counterpart. Specifically, a 90.7 % separation efficiency is observed in the former, characterized by symmetrical flow patterns devoid of wavering CO2 cores, whereas the latter exhibits less desirable velocity vectors. Furthermore, the investigation explores the influence of key parameters, such as liquid volume fraction (LVF) and water droplet diameter, on separation efficiency. It is ascertained that a 10 % LVF with a water droplet diameter of 10 µm yields the highest separation efficiency at 90.7 %, whereas a 20 % LVF with a water droplet diameter of 1 µm results in a reduced efficiency of 50.79 %. Moreover, the impact of structural modifications, such as the addition of vanes, on separation efficiency and pressure drop is explored. Remarkably, the incorporation of vanes leads to a 9.2 % improvement in separation efficiency and a 16.8 % reduction in pressure drop at a 10 % LVF. The findings underscore the significance of structural considerations and parameter optimization in advancing CO2 capture technologies, with implications for sustainable energy production and environmental conservation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化二氧化碳负排放发电厂的二氧化碳净化技术
为了减少二氧化碳的排放,本研究调查了二氧化碳负排放发电厂内二氧化碳净化的优化情况,该发电厂采用的是喷雾喷射冷凝器(SEC)和分离器。该方法涉及蒸汽的直接接触冷凝,主要由惰性气体(CO2)组成,并由过冷液体喷雾提供便利。本文采用数值模型对各种 SEC 出口条件下的旋风分离器进行了综合分析。在方法上,模拟在 Fluent 中进行,包括三维、瞬态和湍流特性,使用雷诺应力模型湍流模型和混合物模型来复制气液分离器内的湍流两相流。研究还深入探讨了结构因素,评估了单入口和双入口分离器在提高二氧化碳净化效率方面的功效。研究揭示了优化过程中的重要见解,强调了与单入口旋流器相比,双入口旋流器的分离效率显著提高。具体来说,前者的分离效率为 90.7%,其特点是对称的流动模式,没有摇摆不定的二氧化碳核心,而后者的速度矢量不太理想。此外,研究还探讨了液体体积分数(LVF)和水滴直径等关键参数对分离效率的影响。结果表明,液体体积分数为 10%、水滴直径为 10 微米时,分离效率最高,达到 90.7%;而液体体积分数为 20%、水滴直径为 1 微米时,分离效率则降低到 50.79%。此外,还探讨了结构调整(如添加叶片)对分离效率和压降的影响。值得注意的是,在 10% LVF 条件下,叶片的加入使分离效率提高了 9.2%,压降降低了 16.8%。研究结果强调了结构因素和参数优化在推进二氧化碳捕集技术方面的重要意义,并对可持续能源生产和环境保护产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1