Preliminary Study on Recontrol Evaluation of a Magnetic Bearing Rotor Falling on Touch-Down Bearings

Energies Pub Date : 2024-07-13 DOI:10.3390/en17143457
Kai Zhang, Yang Xu
{"title":"Preliminary Study on Recontrol Evaluation of a Magnetic Bearing Rotor Falling on Touch-Down Bearings","authors":"Kai Zhang, Yang Xu","doi":"10.3390/en17143457","DOIUrl":null,"url":null,"abstract":"The dynamic control of an active magnetic bearing (AMB) rotor after the rotor falls to its touch-down bearings has always been a difficult problem for applications such as flywheel energy storage. The rotor drop process has obvious nonlinear dynamic characteristics. This paper first discusses the structure of AMBs and the basic principles of their control. Starting from the electromagnetic forces that electromagnets can provide, the problem is simplified to the influence of an electromagnetic force with constant damping characteristics on the dynamic characteristics of a dropped rotor. A dynamic model of an AMB rotor with touch-down bearings was built and the contact force model between the rotor and the touch-down bearings was determined. A constant damping electromagnetic force was applied in two ways to verify the dynamic control feasibility of a dropped rotor through magnetic bearings. The simulation results show that the dropped rotor recovery control is feasible by applying a reasonable electromagnetic force.","PeriodicalId":504870,"journal":{"name":"Energies","volume":"43 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/en17143457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic control of an active magnetic bearing (AMB) rotor after the rotor falls to its touch-down bearings has always been a difficult problem for applications such as flywheel energy storage. The rotor drop process has obvious nonlinear dynamic characteristics. This paper first discusses the structure of AMBs and the basic principles of their control. Starting from the electromagnetic forces that electromagnets can provide, the problem is simplified to the influence of an electromagnetic force with constant damping characteristics on the dynamic characteristics of a dropped rotor. A dynamic model of an AMB rotor with touch-down bearings was built and the contact force model between the rotor and the touch-down bearings was determined. A constant damping electromagnetic force was applied in two ways to verify the dynamic control feasibility of a dropped rotor through magnetic bearings. The simulation results show that the dropped rotor recovery control is feasible by applying a reasonable electromagnetic force.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
落在触地轴承上的磁性轴承转子再控制评估初步研究
在飞轮储能等应用中,如何对主动磁悬浮轴承(AMB)转子落到触地轴承后进行动态控制一直是个难题。转子下落过程具有明显的非线性动态特性。本文首先讨论了 AMB 的结构及其控制的基本原理。从电磁铁可提供的电磁力出发,将问题简化为具有恒定阻尼特性的电磁力对转子下落动态特性的影响。建立了一个带有触地轴承的 AMB 转子动态模型,并确定了转子与触地轴承之间的接触力模型。通过两种方式施加恒定阻尼电磁力,以验证通过磁悬浮轴承对下降转子进行动态控制的可行性。仿真结果表明,通过施加合理的电磁力,掉落转子的恢复控制是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Wide Discharge C-Rates on the Voltage Plateau Performance of Cylindrical Ternary Lithium-Ion Batteries Renewable Energy Source Utilization Progress in South Africa: A Review Density-Driven CO2 Dissolution in Depleted Gas Reservoirs with Bottom Aquifers Investigation of Arc Dynamic Behavior Change Induced by Various Parameter Configurations for C4F7N/CO2 Gas Mixture Fault Detection Methods for Electric Power Steering System Using Hardware in the Loop Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1