首页 > 最新文献

Energies最新文献

英文 中文
Density-Driven CO2 Dissolution in Depleted Gas Reservoirs with Bottom Aquifers 带底部含水层的枯竭气藏中密度驱动的二氧化碳溶解
Pub Date : 2024-07-16 DOI: 10.3390/en17143491
Xiaocong Lyu, Fang Cen, Rui Wang, Huiqing Liu, Jing Wang, Junxi Xiao, Xudong Shen
Depleted gas reservoirs with bottom water show significant potential for long-term CO2 storage. The residual gas influences mass-transfer dynamics, further affecting CO2 dissolution and convection in porous media. In this study, we conducted a series of numerical simulations to explore how residual-gas mixtures impact CO2 dissolution trapping. Moreover, we analyzed the CO2 dissolution rate at various stages and delineated the initiation and decline of convection in relation to gas composition, thereby quantifying the influence of residual-gas mixtures. The findings elucidate that the temporal evolution of the Sherwood number observed in the synthetic model incorporating CTZ closely parallels that of the single-phase model, but the order of magnitude is markedly higher. The introduction of CTZ serves to augment gravity-induced convection and expedites the dissolution of CO2, whereas the presence of residual-gas mixtures exerts a deleterious impact on mass transfer. The escalation of residual gas content concomitantly diminishes the partial pressure and solubility of CO2. Consequently, there is an alleviation of the concentration and density differentials between saturated water and fresh water, resulting in the attenuation of the driving force governing CO2 diffusion and convection. This leads to a substantial reduction in the rate of CO2 dissolution, primarily governed by gravity-induced fingering, thereby manifesting as a delay in the onset and decay time of convection, accompanied by a pronounced decrement in the maximum Sherwood number. In the field-scale simulation, the injected CO2 improves the reservoir pressure, further pushing more gas to the producers. However, due to the presence of CH4 in the post-injection process, the capacity for CO2 dissolution is reduced.
带有底水的枯竭气藏显示出长期封存二氧化碳的巨大潜力。残余气体会影响质量传递动力学,进一步影响多孔介质中的二氧化碳溶解和对流。在本研究中,我们进行了一系列数值模拟,以探索残余气体混合物如何影响二氧化碳溶解捕集。此外,我们还分析了不同阶段的二氧化碳溶解速率,并描述了对流的起始和衰退与气体成分的关系,从而量化了残余气体混合物的影响。研究结果表明,在包含 CTZ 的合成模型中观察到的舍伍德数的时间演变与单相模型密切相关,但数量级明显更高。CTZ 的引入增强了重力对流,加快了二氧化碳的溶解,而残余气体混合物的存在则对传质产生了有害影响。残余气体含量的增加会同时降低二氧化碳的分压和溶解度。因此,饱和水和淡水之间的浓度和密度差减小,导致二氧化碳扩散和对流的驱动力减弱。这导致主要受重力诱导的指状作用影响的二氧化碳溶解速率大大降低,从而表现为对流开始和衰减时间的延迟,并伴随着最大舍伍德数的明显下降。在油田尺度模拟中,注入的二氧化碳提高了储层压力,进一步将更多气体推向生产者。然而,由于注入后过程中存在 CH4,二氧化碳的溶解能力降低。
{"title":"Density-Driven CO2 Dissolution in Depleted Gas Reservoirs with Bottom Aquifers","authors":"Xiaocong Lyu, Fang Cen, Rui Wang, Huiqing Liu, Jing Wang, Junxi Xiao, Xudong Shen","doi":"10.3390/en17143491","DOIUrl":"https://doi.org/10.3390/en17143491","url":null,"abstract":"Depleted gas reservoirs with bottom water show significant potential for long-term CO2 storage. The residual gas influences mass-transfer dynamics, further affecting CO2 dissolution and convection in porous media. In this study, we conducted a series of numerical simulations to explore how residual-gas mixtures impact CO2 dissolution trapping. Moreover, we analyzed the CO2 dissolution rate at various stages and delineated the initiation and decline of convection in relation to gas composition, thereby quantifying the influence of residual-gas mixtures. The findings elucidate that the temporal evolution of the Sherwood number observed in the synthetic model incorporating CTZ closely parallels that of the single-phase model, but the order of magnitude is markedly higher. The introduction of CTZ serves to augment gravity-induced convection and expedites the dissolution of CO2, whereas the presence of residual-gas mixtures exerts a deleterious impact on mass transfer. The escalation of residual gas content concomitantly diminishes the partial pressure and solubility of CO2. Consequently, there is an alleviation of the concentration and density differentials between saturated water and fresh water, resulting in the attenuation of the driving force governing CO2 diffusion and convection. This leads to a substantial reduction in the rate of CO2 dissolution, primarily governed by gravity-induced fingering, thereby manifesting as a delay in the onset and decay time of convection, accompanied by a pronounced decrement in the maximum Sherwood number. In the field-scale simulation, the injected CO2 improves the reservoir pressure, further pushing more gas to the producers. However, due to the presence of CH4 in the post-injection process, the capacity for CO2 dissolution is reduced.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Arc Dynamic Behavior Change Induced by Various Parameter Configurations for C4F7N/CO2 Gas Mixture 不同参数配置对 C4F7N/CO2 气体混合物引起的电弧动态特性变化研究
Pub Date : 2024-07-16 DOI: 10.3390/en17143485
Wen Wang, Xianglian Yan, Beiyang Liu, Yalin Bian
This study investigates the feasibility of using a mixture of C4F7N/CO2 gases as an eco-friendly arcing medium for high-voltage circuit breakers, comparing its performance to that of conventional SF6 gas. An existing magnetohydrodynamic (MHD)-based arc model is modified to incorporate the non-recombination characteristics of C4F7N. The temperature, pressure, and velocity distributions of the arc throughout the whole arcing process are systematically analyzed. First, the differences in multi-physical fields induced by the C4F7N non-recombination feature are highlighted. The effects of varying the C4F7N concentration from 4% to 10% in the C4F7N/CO2 gas mixture on the arc behavior are also computationally studied. The results indicate significant differences in the arc-extinguishing performance between C4F7N/CO2 and SF6 under identical operating conditions. The potential of using C4F7N/CO2 as a viable alternative to SF6 in circuit breaker applications may need further design efforts to optimize key components such as the driving mechanism and nozzle. Moreover, as the concentration of C4F7N increases, the gas mixture exhibits improved flow field characteristics, suggesting that a higher volume concentration of C4F7N enhances the gas’s short-circuit current interruption capabilities.
本研究探讨了使用 C4F7N/CO2 混合气体作为高压断路器环保电弧介质的可行性,并将其性能与传统 SF6 气体进行了比较。对现有的基于磁流体力学(MHD)的电弧模型进行了修改,以纳入 C4F7N 的非再结合特性。系统分析了整个电弧过程中电弧的温度、压力和速度分布。首先,强调了 C4F7N 非再聚合特性引起的多物理场的差异。此外,还对 C4F7N/CO2 混合气体中 C4F7N 浓度从 4% 到 10% 的变化对电弧行为的影响进行了计算研究。结果表明,在相同的工作条件下,C4F7N/CO2 和 SF6 的灭弧性能存在明显差异。要想在断路器应用中将 C4F7N/CO2 作为 SF6 的可行替代品,可能需要进一步设计优化驱动机构和喷嘴等关键部件。此外,随着 C4F7N 浓度的增加,混合气体的流场特性也有所改善,这表明 C4F7N 的体积浓度越高,气体的短路电流中断能力就越强。
{"title":"Investigation of Arc Dynamic Behavior Change Induced by Various Parameter Configurations for C4F7N/CO2 Gas Mixture","authors":"Wen Wang, Xianglian Yan, Beiyang Liu, Yalin Bian","doi":"10.3390/en17143485","DOIUrl":"https://doi.org/10.3390/en17143485","url":null,"abstract":"This study investigates the feasibility of using a mixture of C4F7N/CO2 gases as an eco-friendly arcing medium for high-voltage circuit breakers, comparing its performance to that of conventional SF6 gas. An existing magnetohydrodynamic (MHD)-based arc model is modified to incorporate the non-recombination characteristics of C4F7N. The temperature, pressure, and velocity distributions of the arc throughout the whole arcing process are systematically analyzed. First, the differences in multi-physical fields induced by the C4F7N non-recombination feature are highlighted. The effects of varying the C4F7N concentration from 4% to 10% in the C4F7N/CO2 gas mixture on the arc behavior are also computationally studied. The results indicate significant differences in the arc-extinguishing performance between C4F7N/CO2 and SF6 under identical operating conditions. The potential of using C4F7N/CO2 as a viable alternative to SF6 in circuit breaker applications may need further design efforts to optimize key components such as the driving mechanism and nozzle. Moreover, as the concentration of C4F7N increases, the gas mixture exhibits improved flow field characteristics, suggesting that a higher volume concentration of C4F7N enhances the gas’s short-circuit current interruption capabilities.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fault Detection Methods for Electric Power Steering System Using Hardware in the Loop Simulation 利用硬件在环仿真的电动助力转向系统故障检测方法
Pub Date : 2024-07-16 DOI: 10.3390/en17143486
Wojciech Pietrowski, Magdalena Puskarczyk, Jan Szymenderski
The development of the automotive industry is associated with the rapid advancement of onboard systems. In addition, intensive development in the electronics and control systems industry has resulted in a change in the approach to the issue of assistance systems in vehicles. Classic hydraulic systems have been almost completely replaced by modern electric power steering (EPS) systems, especially in citizen vehicles. This paper focuses on fault detection algorithms for EPS, along with the available tools to aid development and verification. The article discusses in detail the current state of knowledge in this area. The principle of operation of the EPS system and the influence of the structure of the mechanical system on its operation, in particular the characteristics of the ground–tire contact, are presented. Various error identification methods are presented, including those based mainly on a combination of tests of real objects as well as those combined with modern hardware-in-the-loop (HIL) equipment and virtual vehicle environment software, enabling the development of new diagnostic methods, enhancing the security, reliability, and energy control in the vehicle. A review of the literature indicates that although many algorithms which enable fault detection at an early stage are described, their potential for use in a vehicle is highly limited. The reason lies in simplifications, including models and the operating EPS temperature range. The most frequently used simplification of the model is its linearization, which significantly reduces the calculation time; however, this significantly reduces the accuracy of the model, especially in cases with a large range of system operation. The need for methods to detect incipient faults is important for the safety and reliability of the entire car, not only during regular use but also especially during life-saving evasive maneuvers.
汽车工业的发展与车载系统的快速进步密不可分。此外,电子和控制系统行业的蓬勃发展也改变了汽车辅助系统问题的解决方法。传统的液压系统几乎完全被现代电动助力转向(EPS)系统所取代,尤其是在民用车辆中。本文重点介绍 EPS 的故障检测算法,以及有助于开发和验证的可用工具。文章详细讨论了该领域的知识现状。文章介绍了 EPS 系统的工作原理和机械系统结构对其工作的影响,特别是地面-轮胎接触的特性。介绍了各种错误识别方法,包括主要基于真实物体测试的方法,以及与现代硬件在环(HIL)设备和虚拟车辆环境软件相结合的方法,从而能够开发新的诊断方法,提高车辆的安全性、可靠性和能量控制。文献综述表明,尽管已经介绍了许多能够在早期阶段进行故障检测的算法,但这些算法在车辆中的应用潜力非常有限。原因在于简化,包括模型和工作 EPS 温度范围。最常用的模型简化方法是线性化,这可以大大减少计算时间;但这也大大降低了模型的准确性,尤其是在系统运行范围较大的情况下。对于整辆汽车的安全性和可靠性而言,不仅在正常使用过程中,而且尤其是在救生的规避动作中,都需要有检测初期故障的方法。
{"title":"Fault Detection Methods for Electric Power Steering System Using Hardware in the Loop Simulation","authors":"Wojciech Pietrowski, Magdalena Puskarczyk, Jan Szymenderski","doi":"10.3390/en17143486","DOIUrl":"https://doi.org/10.3390/en17143486","url":null,"abstract":"The development of the automotive industry is associated with the rapid advancement of onboard systems. In addition, intensive development in the electronics and control systems industry has resulted in a change in the approach to the issue of assistance systems in vehicles. Classic hydraulic systems have been almost completely replaced by modern electric power steering (EPS) systems, especially in citizen vehicles. This paper focuses on fault detection algorithms for EPS, along with the available tools to aid development and verification. The article discusses in detail the current state of knowledge in this area. The principle of operation of the EPS system and the influence of the structure of the mechanical system on its operation, in particular the characteristics of the ground–tire contact, are presented. Various error identification methods are presented, including those based mainly on a combination of tests of real objects as well as those combined with modern hardware-in-the-loop (HIL) equipment and virtual vehicle environment software, enabling the development of new diagnostic methods, enhancing the security, reliability, and energy control in the vehicle. A review of the literature indicates that although many algorithms which enable fault detection at an early stage are described, their potential for use in a vehicle is highly limited. The reason lies in simplifications, including models and the operating EPS temperature range. The most frequently used simplification of the model is its linearization, which significantly reduces the calculation time; however, this significantly reduces the accuracy of the model, especially in cases with a large range of system operation. The need for methods to detect incipient faults is important for the safety and reliability of the entire car, not only during regular use but also especially during life-saving evasive maneuvers.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renewable Energy Source Utilization Progress in South Africa: A Review 南非可再生能源利用的进展:回顾
Pub Date : 2024-07-16 DOI: 10.3390/en17143487
A. Adebiyi, K. Moloi
Renewable energy has emerged as a promising solution to address the challenges of climate change, energy security, and socio-economic development. South Africa, with its abundant renewable energy resources, has made significant strides in the utilization of renewable energy over the past decade. This paper provides a comprehensive review of the progress of renewable energy advancement in South Africa, examining the policies, initiatives, and achievements in various renewable energy sectors. This study explores the country’s transition from a heavily coal-dependent energy system to a diversified and sustainable energy mix. It analyses the growth of renewable energy technologies, such as wind power and solar photovoltaic (PV), highlighting the key milestones, challenges, and opportunities. Furthermore, this paper discusses the role of government support, regulatory frameworks, and private sector investments in driving renewable energy deployment in South Africa. Finally, it identifies the prospects and potential areas for further advancement in the renewable energy sector. This review aims to contribute to the understanding of South Africa’s renewable energy journey and provides valuable insights for policy-makers, researchers, and stakeholders involved in the sustainable energy transition.
可再生能源已成为应对气候变化、能源安全和社会经济发展等挑战的一种前景广阔的解决方案。南非拥有丰富的可再生能源资源,过去十年来在利用可再生能源方面取得了长足进步。本文全面回顾了南非在推进可再生能源方面取得的进展,研究了各个可再生能源领域的政策、举措和成就。本研究探讨了南非从严重依赖煤炭的能源系统向多元化和可持续能源组合过渡的过程。它分析了风力发电和太阳能光伏发电等可再生能源技术的发展,强调了关键的里程碑、挑战和机遇。此外,本文还讨论了政府支持、监管框架和私营部门投资在推动南非可再生能源部署中的作用。最后,本文指出了可再生能源领域进一步发展的前景和潜在领域。本综述旨在帮助人们了解南非的可再生能源发展历程,并为参与可持续能源转型的政策制定者、研究人员和利益相关者提供有价值的见解。
{"title":"Renewable Energy Source Utilization Progress in South Africa: A Review","authors":"A. Adebiyi, K. Moloi","doi":"10.3390/en17143487","DOIUrl":"https://doi.org/10.3390/en17143487","url":null,"abstract":"Renewable energy has emerged as a promising solution to address the challenges of climate change, energy security, and socio-economic development. South Africa, with its abundant renewable energy resources, has made significant strides in the utilization of renewable energy over the past decade. This paper provides a comprehensive review of the progress of renewable energy advancement in South Africa, examining the policies, initiatives, and achievements in various renewable energy sectors. This study explores the country’s transition from a heavily coal-dependent energy system to a diversified and sustainable energy mix. It analyses the growth of renewable energy technologies, such as wind power and solar photovoltaic (PV), highlighting the key milestones, challenges, and opportunities. Furthermore, this paper discusses the role of government support, regulatory frameworks, and private sector investments in driving renewable energy deployment in South Africa. Finally, it identifies the prospects and potential areas for further advancement in the renewable energy sector. This review aims to contribute to the understanding of South Africa’s renewable energy journey and provides valuable insights for policy-makers, researchers, and stakeholders involved in the sustainable energy transition.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Wide Discharge C-Rates on the Voltage Plateau Performance of Cylindrical Ternary Lithium-Ion Batteries 宽放电 C 速率对圆柱形三元锂离子电池电压峰值性能的影响
Pub Date : 2024-07-16 DOI: 10.3390/en17143488
Xingxing Wang, Yuhang Chen, Linfei Chen, Shengren Liu, Yu Zhu, Yelin Deng
Battery voltage plateau characteristics are crucial for designing and controlling battery management systems. Utilising the plateau period attributes to their fullest extent can enable optimal battery control, enhance battery performance, and prolong battery lifespan. This research aimed to investigate the performance of cylindrical ternary lithium batteries at various discharge rates, focusing on the variations in terminal voltage, capacity, and temperature. The battery performance at different discharge rates was meticulously examined through cyclic charge/discharge experiments. The convexity of the voltage curve was used to analyse the voltage plateau characteristics at different rates. The findings revealed significant differences in battery performance under varying discharge rates. Higher discharge rates resulted in shorter discharge times and lower battery voltages at corresponding residual capacities. The discharge time, capacity, and voltage during the plateau phase decreased as the discharge rate increased. At discharge rates of 1 C, 3 C, 5 C, 7 C, 9 C, and 11 C, the proportion of discharged battery capacity ranged from 86.45% to 78.42%. At the same time, voltage and temperature variations during the plateau period decreased significantly compared to those before and after discharge. This research provides a crucial reference point for advancing battery design and thermal management systems.
电池电压的高原特性对于设计和控制电池管理系统至关重要。充分利用高原期特性可以优化电池控制、提高电池性能并延长电池寿命。本研究旨在研究圆柱形三元锂电池在不同放电速率下的性能,重点关注端电压、容量和温度的变化。通过循环充放电实验,对电池在不同放电速率下的性能进行了细致的研究。电压曲线的凸度用于分析不同速率下的电压高原特性。研究结果表明,不同放电率下的电池性能存在明显差异。放电率越高,放电时间越短,相应剩余容量下的电池电压越低。高原阶段的放电时间、容量和电压随着放电率的增加而减少。在放电率为 1 C、3 C、5 C、7 C、9 C 和 11 C 时,电池容量的放电比例从 86.45% 到 78.42% 不等。同时,与放电前后相比,高原期的电压和温度变化明显减小。这项研究为推进电池设计和热管理系统提供了重要参考。
{"title":"The Impact of Wide Discharge C-Rates on the Voltage Plateau Performance of Cylindrical Ternary Lithium-Ion Batteries","authors":"Xingxing Wang, Yuhang Chen, Linfei Chen, Shengren Liu, Yu Zhu, Yelin Deng","doi":"10.3390/en17143488","DOIUrl":"https://doi.org/10.3390/en17143488","url":null,"abstract":"Battery voltage plateau characteristics are crucial for designing and controlling battery management systems. Utilising the plateau period attributes to their fullest extent can enable optimal battery control, enhance battery performance, and prolong battery lifespan. This research aimed to investigate the performance of cylindrical ternary lithium batteries at various discharge rates, focusing on the variations in terminal voltage, capacity, and temperature. The battery performance at different discharge rates was meticulously examined through cyclic charge/discharge experiments. The convexity of the voltage curve was used to analyse the voltage plateau characteristics at different rates. The findings revealed significant differences in battery performance under varying discharge rates. Higher discharge rates resulted in shorter discharge times and lower battery voltages at corresponding residual capacities. The discharge time, capacity, and voltage during the plateau phase decreased as the discharge rate increased. At discharge rates of 1 C, 3 C, 5 C, 7 C, 9 C, and 11 C, the proportion of discharged battery capacity ranged from 86.45% to 78.42%. At the same time, voltage and temperature variations during the plateau period decreased significantly compared to those before and after discharge. This research provides a crucial reference point for advancing battery design and thermal management systems.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations 水体上方太阳能光伏板工作温度的预测建模:与地面安装设备的性能对比分析
Pub Date : 2024-07-16 DOI: 10.3390/en17143489
Karmendra Kumar Agrawal, Shibani Khanra Jha, Ravi Kant Mittal, Ajit Pratap Singh, Sanjay Vashishtha, Saurabh Gupta, M. K. Soni
Solar panel efficiency is significantly influenced by its operating temperature. Recent advancements in emerging renewable energy alternatives have enabled photovoltaic (PV) module installation over water bodies, leveraging their increased efficiency and associated benefits. This paper examines the operational performance of solar panels placed over water bodies, comparing them to ground-mounted solar PV installations. Regression models for panel temperature are developed based on experimental setups at BITS Pilani, India. Developed regression models, including linear, quadratic, and exponential, are utilized to predict the operating temperature of solar PV installations above water bodies. These models incorporated parameters such as ambient temperature, solar insolation, wind velocity, water temperature, and humidity. Among these, the one-degree regression models with three parameters outperformed the models with four or five parameters with a prediction error of 5.5 °C. Notably, the study found that the annual energy output estimates from the best model had an error margin of less than 0.2% compared to recorded data. Research indicates that solar PV panels over water bodies produce approximately 2.59% more annual energy output than ground-mounted systems. The newly developed regression models provide a predictive tool for estimating the operating temperature of solar PV installations above water bodies, using only three meteorological parameters: ambient temperature, solar insolation, and wind velocity, for accurate temperature prediction.
太阳能电池板的效率在很大程度上受其工作温度的影响。新兴可再生能源替代品的最新进展使得光伏(PV)模块可以安装在水体上,从而利用其更高的效率和相关优势。本文研究了水体上方安装的太阳能电池板的运行性能,并将其与地面安装的太阳能光伏装置进行了比较。根据印度 BITS Pilani 的实验装置,开发了电池板温度回归模型。开发的回归模型包括线性模型、二次模型和指数模型,用于预测水体上方太阳能光伏装置的运行温度。这些模型纳入了环境温度、太阳日照、风速、水温和湿度等参数。其中,三个参数的一度回归模型优于四个或五个参数的模型,预测误差为 5.5 °C。值得注意的是,研究发现,与记录数据相比,最佳模型的年能量输出估计值误差小于 0.2%。研究表明,水体上方的太阳能光伏电池板的年发电量比地面安装系统高出约 2.59%。新开发的回归模型为估算水体上方太阳能光伏装置的工作温度提供了一个预测工具,只需使用三个气象参数:环境温度、太阳日照和风速,即可准确预测温度。
{"title":"Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations","authors":"Karmendra Kumar Agrawal, Shibani Khanra Jha, Ravi Kant Mittal, Ajit Pratap Singh, Sanjay Vashishtha, Saurabh Gupta, M. K. Soni","doi":"10.3390/en17143489","DOIUrl":"https://doi.org/10.3390/en17143489","url":null,"abstract":"Solar panel efficiency is significantly influenced by its operating temperature. Recent advancements in emerging renewable energy alternatives have enabled photovoltaic (PV) module installation over water bodies, leveraging their increased efficiency and associated benefits. This paper examines the operational performance of solar panels placed over water bodies, comparing them to ground-mounted solar PV installations. Regression models for panel temperature are developed based on experimental setups at BITS Pilani, India. Developed regression models, including linear, quadratic, and exponential, are utilized to predict the operating temperature of solar PV installations above water bodies. These models incorporated parameters such as ambient temperature, solar insolation, wind velocity, water temperature, and humidity. Among these, the one-degree regression models with three parameters outperformed the models with four or five parameters with a prediction error of 5.5 °C. Notably, the study found that the annual energy output estimates from the best model had an error margin of less than 0.2% compared to recorded data. Research indicates that solar PV panels over water bodies produce approximately 2.59% more annual energy output than ground-mounted systems. The newly developed regression models provide a predictive tool for estimating the operating temperature of solar PV installations above water bodies, using only three meteorological parameters: ambient temperature, solar insolation, and wind velocity, for accurate temperature prediction.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Voltage-Abnormal Cell Detection Method for Lithium-Ion Battery Mass Production Based on Data-Driven Model with Multi-Source Time Series Data 基于数据驱动模型和多源时间序列数据的新型锂离子电池量产电压异常检测方法
Pub Date : 2024-07-15 DOI: 10.3390/en17143472
Xiang Wang, Jianjun He, Fuxin Huang, Zhenjie Liu, Aibin Deng, Rihui Long
Before leaving the factory, lithium-ion battery (LIB) cells are screened to exclude voltage-abnormal cells, which can increase the fault rate, troubleshooting difficulty, and degrade pack performance. However, the time interval to obtain the detection results through the existing voltage-abnormal cell method is too long, which can seriously affect production efficiency and delay shipment, especially in the mass production of LIBs when facing a large number of time-critical orders. In this paper, we propose a data-driven voltage-abnormal cell detection method, using a fast model with simple architecture, which can detect voltage-abnormal cells based on the multi-source time series data of the LIB without a time interval. Firstly, our method transforms the different source data of a cell into a multi-source time series data representation and utilizes a recurrent-based data embedding to model the relation within it. Then, a simplified MobileNet is used to extract hidden feature from the embedded data. Finally, we detect the voltage-abnormal cells according to the hidden feature with a cell classification head. The experiment results show that the accuracy and average running time of our model on the voltage-abnormal cell detection task is 95.42% and 0.0509 ms per sample, which is a considerable improvement over existing methods.
锂离子电池(LIB)电芯在出厂前需要经过筛选,以排除电压异常电芯,这可能会增加故障率和故障排除难度,并降低电池组性能。然而,通过现有的电压异常电芯检测方法获得检测结果的时间间隔太长,会严重影响生产效率和延迟出货,尤其是在锂离子电池的大规模生产中,面对大量时间紧迫的订单时更是如此。在本文中,我们提出了一种数据驱动的电压异常电池检测方法,该方法采用结构简单的快速模型,可基于无时间间隔的 LIB 多源时间序列数据检测电压异常电池。首先,我们的方法将电池的不同源数据转换为多源时间序列数据表示,并利用基于递归的数据嵌入为其中的关系建模。然后,使用简化的 MobileNet 从嵌入数据中提取隐藏特征。最后,我们利用细胞分类头根据隐藏特征检测电压异常细胞。实验结果表明,我们的模型在电压异常细胞检测任务中的准确率为 95.42%,平均运行时间为每个样本 0.0509 毫秒,与现有方法相比有很大改进。
{"title":"A Novel Voltage-Abnormal Cell Detection Method for Lithium-Ion Battery Mass Production Based on Data-Driven Model with Multi-Source Time Series Data","authors":"Xiang Wang, Jianjun He, Fuxin Huang, Zhenjie Liu, Aibin Deng, Rihui Long","doi":"10.3390/en17143472","DOIUrl":"https://doi.org/10.3390/en17143472","url":null,"abstract":"Before leaving the factory, lithium-ion battery (LIB) cells are screened to exclude voltage-abnormal cells, which can increase the fault rate, troubleshooting difficulty, and degrade pack performance. However, the time interval to obtain the detection results through the existing voltage-abnormal cell method is too long, which can seriously affect production efficiency and delay shipment, especially in the mass production of LIBs when facing a large number of time-critical orders. In this paper, we propose a data-driven voltage-abnormal cell detection method, using a fast model with simple architecture, which can detect voltage-abnormal cells based on the multi-source time series data of the LIB without a time interval. Firstly, our method transforms the different source data of a cell into a multi-source time series data representation and utilizes a recurrent-based data embedding to model the relation within it. Then, a simplified MobileNet is used to extract hidden feature from the embedded data. Finally, we detect the voltage-abnormal cells according to the hidden feature with a cell classification head. The experiment results show that the accuracy and average running time of our model on the voltage-abnormal cell detection task is 95.42% and 0.0509 ms per sample, which is a considerable improvement over existing methods.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Fate of Fluorine Post Per- and Polyfluoroalkyl Substances Destruction during the Thermal Treatment of Biosolids: A Thermodynamic Study 生物固体热处理期间全氟和多氟烷基物质破坏后氟的命运:热力学研究
Pub Date : 2024-07-15 DOI: 10.3390/en17143476
Savankumar Patel, P. Halder, I. Hakeem, Ekaterina Selezneva, Manoj Kumar Jena, G. Veluswamy, Nimesha Rathnayake, Abhishek Sharma, A. Sivaram, Aravind Surapaneni, Ravi Naidu, M. Megharaj, Arun K. Vuppaladadiyam, Kalpit Shah
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated synthetic chemicals that are highly recalcitrant, toxic, and bio-accumulative and have been detected in biosolids worldwide, posing potential risks to humans and the environment. Recent studies suggest that the organic C-F bond in PFAS can be destructed and potentially mineralised into inorganic fluorides during thermal treatment. This study focuses on thermodynamic equilibrium investigations and the fate of fluorine compounds post-PFAS destruction during biosolid thermal treatment. The results indicate that gas-phase fluorine compounds are mainly hydrogen fluoride (HF) and alkali fluorides, whereas solid-phase fluorine compounds include alkaline earth fluorides and their spinels. High moisture and oxygen content in the volatiles increased the concentration of HF in the gas phase. However, adding minerals reduced the emission of HF in the gas phase significantly and enhanced the capture of fluorine as CaF2 spinel in the solid phase. This study also investigates the effect of feedstock composition on the fate of fluorine. High ash content and low volatile matter in the feedstock reduced HF gas emissions and increased fluorine capture in the solid product. The findings of this work are useful in designing thermal systems with optimised operating conditions for minimising the release of fluorinated species during the thermal treatment of PFAS-containing biosolids.
全氟烷基和多氟烷基物质(PFAS)是一组氟化合成化学物质,具有很强的难降解性、毒性和生物累积性,已在世界各地的生物固体中检测到,对人类和环境构成潜在风险。最新研究表明,在热处理过程中,PFAS 中的有机 C-F 键会被破坏,并有可能矿化成无机氟化物。本研究的重点是生物固体热处理过程中的热力学平衡研究和全氟辛烷磺酸破坏后氟化合物的归宿。结果表明,气相氟化合物主要是氟化氢(HF)和碱氟化物,而固相氟化合物包括碱土氟化物及其尖晶石。挥发物中水分和氧气含量较高,增加了气相中氟化氢的浓度。然而,添加矿物质可显著减少气相中 HF 的排放,并增强固相中作为 CaF2 尖晶石的氟捕获。本研究还调查了原料成分对氟的命运的影响。原料中的高灰分和低挥发性物质减少了氟化氢气体的排放,增加了固态产品中的氟捕集。这项工作的发现有助于设计具有优化操作条件的热处理系统,从而在热处理含全氟辛烷磺酸的生物固体时最大限度地减少含氟物质的释放。
{"title":"The Fate of Fluorine Post Per- and Polyfluoroalkyl Substances Destruction during the Thermal Treatment of Biosolids: A Thermodynamic Study","authors":"Savankumar Patel, P. Halder, I. Hakeem, Ekaterina Selezneva, Manoj Kumar Jena, G. Veluswamy, Nimesha Rathnayake, Abhishek Sharma, A. Sivaram, Aravind Surapaneni, Ravi Naidu, M. Megharaj, Arun K. Vuppaladadiyam, Kalpit Shah","doi":"10.3390/en17143476","DOIUrl":"https://doi.org/10.3390/en17143476","url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated synthetic chemicals that are highly recalcitrant, toxic, and bio-accumulative and have been detected in biosolids worldwide, posing potential risks to humans and the environment. Recent studies suggest that the organic C-F bond in PFAS can be destructed and potentially mineralised into inorganic fluorides during thermal treatment. This study focuses on thermodynamic equilibrium investigations and the fate of fluorine compounds post-PFAS destruction during biosolid thermal treatment. The results indicate that gas-phase fluorine compounds are mainly hydrogen fluoride (HF) and alkali fluorides, whereas solid-phase fluorine compounds include alkaline earth fluorides and their spinels. High moisture and oxygen content in the volatiles increased the concentration of HF in the gas phase. However, adding minerals reduced the emission of HF in the gas phase significantly and enhanced the capture of fluorine as CaF2 spinel in the solid phase. This study also investigates the effect of feedstock composition on the fate of fluorine. High ash content and low volatile matter in the feedstock reduced HF gas emissions and increased fluorine capture in the solid product. The findings of this work are useful in designing thermal systems with optimised operating conditions for minimising the release of fluorinated species during the thermal treatment of PFAS-containing biosolids.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Rapid Simulation of the Pre-Cooling Process of a Large LNG Storage Tank with the Consideration of Digital Twin Requirements 考虑数字孪生需求的大型液化天然气储罐预冷过程快速模拟研究
Pub Date : 2024-07-15 DOI: 10.3390/en17143471
Yunfei Zhao, Caifu Qian, Guangzhi Shi, Mu Li, Zaoyang Qiu, Baohe Zhang, Zhiwei Wu
The pre-cooling of a large LNG storage tank involves complex phenomena such as heat transfer, low-temperature flow, gas displacement, and vaporization. The whole pre-cooling process could take up to 50 h. For large-scale, full-capacity storage tanks, it is particularly important to accurately control the pre-cooling temperature. Digital twin technology can characterize and predict the full life cycle parameters from the beginning of pre-cooling development to the end and even the appearance of damage in real time. The construction of a digital twin platform requires a large number of data samples in order to predict the operating state of the device. Therefore, a simulation method with high computational efficiency for the pre-cooling process of LNG tanks is of great importance. In this paper, the mixture model and discrete phase model (DPM) are applied to simulate the pre-cooling process of a large LNG full-capacity tank. Following Euler–Lagrange, the DPM greatly simplifies the solution process. Compared with the experimental results, the maximum error of the DPM simulation results is less than 11%. Such a highly efficient simulation method for the large LNG full-capacity storage tank can make it possible to build the digital twin platform that needs hundreds of data model samples.
大型液化天然气储罐的预冷涉及传热、低温流动、气体置换和汽化等复杂现象。对于大型全容量储罐而言,精确控制预冷温度尤为重要。数字孪生技术可以实时表征和预测从预冷开始到预冷结束甚至出现损坏的整个生命周期参数。数字孪生平台的构建需要大量的数据样本,以便预测设备的运行状态。因此,一种计算效率高的 LNG 储罐预冷过程仿真方法就显得尤为重要。本文采用混合物模型和离散相模型(DPM)来模拟大型 LNG 全容量储罐的预冷过程。按照 Euler-Lagrange 方法,DPM 极大地简化了求解过程。与实验结果相比,DPM 仿真结果的最大误差小于 11%。如此高效的大型 LNG 全容量储罐仿真方法,使得建立需要数百个数据模型样本的数字孪生平台成为可能。
{"title":"Study on Rapid Simulation of the Pre-Cooling Process of a Large LNG Storage Tank with the Consideration of Digital Twin Requirements","authors":"Yunfei Zhao, Caifu Qian, Guangzhi Shi, Mu Li, Zaoyang Qiu, Baohe Zhang, Zhiwei Wu","doi":"10.3390/en17143471","DOIUrl":"https://doi.org/10.3390/en17143471","url":null,"abstract":"The pre-cooling of a large LNG storage tank involves complex phenomena such as heat transfer, low-temperature flow, gas displacement, and vaporization. The whole pre-cooling process could take up to 50 h. For large-scale, full-capacity storage tanks, it is particularly important to accurately control the pre-cooling temperature. Digital twin technology can characterize and predict the full life cycle parameters from the beginning of pre-cooling development to the end and even the appearance of damage in real time. The construction of a digital twin platform requires a large number of data samples in order to predict the operating state of the device. Therefore, a simulation method with high computational efficiency for the pre-cooling process of LNG tanks is of great importance. In this paper, the mixture model and discrete phase model (DPM) are applied to simulate the pre-cooling process of a large LNG full-capacity tank. Following Euler–Lagrange, the DPM greatly simplifies the solution process. Compared with the experimental results, the maximum error of the DPM simulation results is less than 11%. Such a highly efficient simulation method for the large LNG full-capacity storage tank can make it possible to build the digital twin platform that needs hundreds of data model samples.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Underwater Compressed Air Flexible Airbag Energy Storage Device and Experimental Study of Physical Model in Pool 水下压缩空气柔性气囊储能装置的设计及水池中物理模型的实验研究
Pub Date : 2024-07-15 DOI: 10.3390/en17143478
Xiangang Ren, Wanlang Peng, Zhuo Wang, Hongwen Ma
Renewable energy is a prominent area of research within the energy sector, and the storage of renewable energy represents an efficient method for its utilization. There are various energy storage methods available, among which compressed air energy storage stands out due to its large capacity and cost-effective working medium. While land-based compressed air energy storage power stations have been constructed worldwide, their efficiency remains low. Underwater compressed air energy storage has the potential to significantly enhance efficiency, although no such device currently exists. This paper presents the design of an UWCA-FABESD utilizing five flexible air bags for underwater gas storage and discharge. Additionally, it introduces the working principle of the adiabatic underwater compressed air energy storage system and device. Furthermore, a small-scale physical model with similar functionality was designed and manufactured to simulate the charging process of the air bag in onshore charging and discharging tests as well as posture adjustment and lifting arrangement tests, along with underwater charging and discharging tests. These experiments validated the related functions of the designed underwater compressed air flexible bag energy storage device while proposing methods for its improvement. This research provides a new approach to underwater compressed air energy storage.
可再生能源是能源行业的一个重要研究领域,而可再生能源的储存则是一种有效的利用方法。目前有多种储能方法,其中压缩空气储能因其容量大、工作介质成本低而脱颖而出。虽然陆基压缩空气储能电站已在世界各地建成,但其效率仍然很低。水下压缩空气储能有可能显著提高效率,但目前还没有这种装置。本文介绍了利用五个柔性气囊进行水下气体储存和排放的 UWCA-FABESD 的设计。此外,本文还介绍了绝热水下压缩空气储能系统和装置的工作原理。此外,还设计和制造了具有类似功能的小型物理模型,以模拟气囊在陆上充放电试验、姿态调整和升降布置试验以及水下充放电试验中的充气过程。这些试验验证了所设计的水下压缩空气柔性气囊储能装置的相关功能,同时提出了改进方法。这项研究为水下压缩空气储能提供了一种新方法。
{"title":"Design of Underwater Compressed Air Flexible Airbag Energy Storage Device and Experimental Study of Physical Model in Pool","authors":"Xiangang Ren, Wanlang Peng, Zhuo Wang, Hongwen Ma","doi":"10.3390/en17143478","DOIUrl":"https://doi.org/10.3390/en17143478","url":null,"abstract":"Renewable energy is a prominent area of research within the energy sector, and the storage of renewable energy represents an efficient method for its utilization. There are various energy storage methods available, among which compressed air energy storage stands out due to its large capacity and cost-effective working medium. While land-based compressed air energy storage power stations have been constructed worldwide, their efficiency remains low. Underwater compressed air energy storage has the potential to significantly enhance efficiency, although no such device currently exists. This paper presents the design of an UWCA-FABESD utilizing five flexible air bags for underwater gas storage and discharge. Additionally, it introduces the working principle of the adiabatic underwater compressed air energy storage system and device. Furthermore, a small-scale physical model with similar functionality was designed and manufactured to simulate the charging process of the air bag in onshore charging and discharging tests as well as posture adjustment and lifting arrangement tests, along with underwater charging and discharging tests. These experiments validated the related functions of the designed underwater compressed air flexible bag energy storage device while proposing methods for its improvement. This research provides a new approach to underwater compressed air energy storage.","PeriodicalId":504870,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1