{"title":"Exploring the Therapeutic Potential of Omega-3 Fatty Acid Supplementation in Dry Eye Syndrome: An In vitro Investigation","authors":"Abdulmajeed Alharbi","doi":"10.4103/jpbs.jpbs_367_24","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n \n \n \n Dry eye syndrome (DES) is a prevalent ocular condition characterized by insufficient tear production or excessive tear evaporation, leading to discomfort and visual disturbances. Omega-3 fatty acids have been proposed as a potential therapeutic intervention for DES due to their anti-inflammatory and lipid modulation properties.\n \n \n \n Cultured human corneal epithelial cells were exposed to various concentrations of omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for 72 h. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while inflammatory cytokine levels (interleukin-6 (IL-6), interleukin-8 (IL-8)) and lipid profile (measured by lipid staining) were evaluated using enzyme-linked immunosorbent assay. Untreated cells served as controls for comparison.\n \n \n \n Omega-3 fatty acid supplementation demonstrated a dose-dependent increase in cell viability compared to untreated cells. At optimal concentrations, EPA and DHA significantly enhanced cell viability by 30% and 35%, respectively (P < 0.05). Moreover, omega-3 fatty acid supplementation led to a significant reduction in inflammatory cytokine levels, with a 50% decrease in IL-6 and IL-8 secretion compared to untreated cells (P < 0.01). Additionally, lipid staining revealed improved lipid profile and organization in corneal epithelial cells following omega-3 fatty acid supplementation, indicative of enhanced tear film stability.\n \n \n \n \n In vitro findings suggest that omega-3 fatty acid supplementation exerts beneficial effects on cellular markers associated with DES.\n","PeriodicalId":16824,"journal":{"name":"Journal of Pharmacy and Bioallied Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Bioallied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jpbs.jpbs_367_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT
Dry eye syndrome (DES) is a prevalent ocular condition characterized by insufficient tear production or excessive tear evaporation, leading to discomfort and visual disturbances. Omega-3 fatty acids have been proposed as a potential therapeutic intervention for DES due to their anti-inflammatory and lipid modulation properties.
Cultured human corneal epithelial cells were exposed to various concentrations of omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for 72 h. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while inflammatory cytokine levels (interleukin-6 (IL-6), interleukin-8 (IL-8)) and lipid profile (measured by lipid staining) were evaluated using enzyme-linked immunosorbent assay. Untreated cells served as controls for comparison.
Omega-3 fatty acid supplementation demonstrated a dose-dependent increase in cell viability compared to untreated cells. At optimal concentrations, EPA and DHA significantly enhanced cell viability by 30% and 35%, respectively (P < 0.05). Moreover, omega-3 fatty acid supplementation led to a significant reduction in inflammatory cytokine levels, with a 50% decrease in IL-6 and IL-8 secretion compared to untreated cells (P < 0.01). Additionally, lipid staining revealed improved lipid profile and organization in corneal epithelial cells following omega-3 fatty acid supplementation, indicative of enhanced tear film stability.
In vitro findings suggest that omega-3 fatty acid supplementation exerts beneficial effects on cellular markers associated with DES.
期刊介绍:
Journal of Pharmacy And Bioallied Sciences is a Quarterly multidisciplinary open access biomedical journal. Journal of Pharmacy And Bioallied Sciences is an international medium of interaction between scientist, academicians and industrial personnel’s.JPBS is now offial publication of OPUBS.