Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph
{"title":"Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors","authors":"Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph","doi":"10.1002/adsr.202400040","DOIUrl":null,"url":null,"abstract":"<p>Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.