Impact of Air Velocity on Mold Growth in High Temperature and Humidity Conditions: An Experimental Approach

Zhijun Yang, Weijun Gao, Dandan Yang, Xiaotong Hu, Tao Xu
{"title":"Impact of Air Velocity on Mold Growth in High Temperature and Humidity Conditions: An Experimental Approach","authors":"Zhijun Yang, Weijun Gao, Dandan Yang, Xiaotong Hu, Tao Xu","doi":"10.3390/buildings14072145","DOIUrl":null,"url":null,"abstract":"To address the challenges of indoor mold in southern China, this study designed and constructed an innovative experimental system to investigate mold growth in buildings under the combined influence of multiple factors. Using Fluent simulation (Ansys Fluent 19.0), we designed a suitably sized experimental chamber to realistically replicate the effects of factors such as temperature, humidity, and air velocity on mold growth. After establishing and fine-tuning the experimental system, we conducted two preliminary experiments, successfully validating the feasibility of our setup. Additionally, we observed that in a high-temperature, high-humidity environment of 28 °C and 80% relative humidity, the mold growth rate in the experimental chamber increased with the rise in inlet air velocity. This experimental system will serve as the foundation for future studies on indoor mold growth in building spaces in southern China.","PeriodicalId":505657,"journal":{"name":"Buildings","volume":"57 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/buildings14072145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges of indoor mold in southern China, this study designed and constructed an innovative experimental system to investigate mold growth in buildings under the combined influence of multiple factors. Using Fluent simulation (Ansys Fluent 19.0), we designed a suitably sized experimental chamber to realistically replicate the effects of factors such as temperature, humidity, and air velocity on mold growth. After establishing and fine-tuning the experimental system, we conducted two preliminary experiments, successfully validating the feasibility of our setup. Additionally, we observed that in a high-temperature, high-humidity environment of 28 °C and 80% relative humidity, the mold growth rate in the experimental chamber increased with the rise in inlet air velocity. This experimental system will serve as the foundation for future studies on indoor mold growth in building spaces in southern China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气流速度对高温高湿条件下霉菌生长的影响:实验方法
为了应对中国南方室内霉菌的挑战,本研究设计并构建了一个创新的实验系统,以研究霉菌在多种因素共同影响下在建筑物中的生长情况。利用 Fluent 仿真(Ansys Fluent 19.0),我们设计了一个大小合适的实验箱,以真实再现温度、湿度和风速等因素对霉菌生长的影响。在建立和微调实验系统后,我们进行了两次初步实验,成功验证了设置的可行性。此外,我们还观察到,在 28 °C 和 80% 相对湿度的高温高湿环境中,实验箱内的霉菌生长速度随着进气风速的增加而增加。该实验系统将为今后研究中国南方建筑空间的室内霉菌生长奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Factor Orthogonal Experiments and Enhancement Mechanisms of Unconfined Compressive Strength of Soda Residue Cement Lime Soil Performance Evaluation of Multiple Aging-Regeneration of SBS-Modified Bitumen Regenerated by a Composite Rejuvenator Classroom Interior Design: Wooden Furniture Prototype with Feedback from Students and Teachers Visual Analysis of Social Media Data on Experiences at a World Heritage Tourist Destination: Historic Centre of Macau Enhancement of Compressive Strength and Durability of Sulfate-Attacked Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1