Antifouling Properties of Electrospun Polymeric Coatings Induced by Controlled Surface Morphology

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Energy & Environmental Materials Pub Date : 2024-07-12 DOI:10.1002/eem2.12773
Fabio L. Favrin, Lorenzo Zavagna, Matteo Sestini, Semih Esin, Bahareh Azimi, Massimiliano Labardi, Mario Milazzo, Giuseppe Gallone, Giovanna Batoni, Serena Danti
{"title":"Antifouling Properties of Electrospun Polymeric Coatings Induced by Controlled Surface Morphology","authors":"Fabio L. Favrin,&nbsp;Lorenzo Zavagna,&nbsp;Matteo Sestini,&nbsp;Semih Esin,&nbsp;Bahareh Azimi,&nbsp;Massimiliano Labardi,&nbsp;Mario Milazzo,&nbsp;Giuseppe Gallone,&nbsp;Giovanna Batoni,&nbsp;Serena Danti","doi":"10.1002/eem2.12773","DOIUrl":null,"url":null,"abstract":"<p>Nosocomial infections affect implanted medical devices and greatly challenge their functional outcomes, becoming sometimes life threatening for the patients. Therefore, aggressive antibiotic therapies are administered, which often require the use of last-resort drugs, if the infection is caused by multi-drug-resistant bacteria. Reducing the risk of bacterial contamination of medical devices in the hospitals has thus become an emerging issue. Promising routes to control these infections are based on materials provided with intrinsic bactericidal properties (i.e., chemical action) and on the design of surface coatings able to limit bacteria adhesion and fouling phenomena (i.e., physical action), thus preventing bacterial biofilm formation. Here, we report the development and validation of coatings made of layer-by-layer deposition of electrospun poly(vinylidene fluoride-<i>co</i>-trifluoro ethylene) P(VDF-TrFE) fibers with controlled orientations, which ultimately gave rise to antifouling surfaces. The obtained 10-layer surface morphology with 90° orientation fibers was able to efficiently prevent the adhesion of bacteria, by establishing a superhydrophobic-like behavior compatible with the Cassie-Baxter regimen. Moreover, the results highlighted that surface wettability and bacteria adhesion could be controlled using fibers with diameter comparable to bacteria size (i.e., achievable via electrospinning process), by tuning the intra-fiber spacing, with relevant implications in the future design of biomedical surface coatings.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nosocomial infections affect implanted medical devices and greatly challenge their functional outcomes, becoming sometimes life threatening for the patients. Therefore, aggressive antibiotic therapies are administered, which often require the use of last-resort drugs, if the infection is caused by multi-drug-resistant bacteria. Reducing the risk of bacterial contamination of medical devices in the hospitals has thus become an emerging issue. Promising routes to control these infections are based on materials provided with intrinsic bactericidal properties (i.e., chemical action) and on the design of surface coatings able to limit bacteria adhesion and fouling phenomena (i.e., physical action), thus preventing bacterial biofilm formation. Here, we report the development and validation of coatings made of layer-by-layer deposition of electrospun poly(vinylidene fluoride-co-trifluoro ethylene) P(VDF-TrFE) fibers with controlled orientations, which ultimately gave rise to antifouling surfaces. The obtained 10-layer surface morphology with 90° orientation fibers was able to efficiently prevent the adhesion of bacteria, by establishing a superhydrophobic-like behavior compatible with the Cassie-Baxter regimen. Moreover, the results highlighted that surface wettability and bacteria adhesion could be controlled using fibers with diameter comparable to bacteria size (i.e., achievable via electrospinning process), by tuning the intra-fiber spacing, with relevant implications in the future design of biomedical surface coatings.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受控表面形态诱导的电纺聚合物涂层的防污特性
非医院感染会影响到植入式医疗器械,对其功能效果造成极大挑战,有时甚至会威胁到患者的生命。因此,必须采取积极的抗生素疗法,如果感染是由多重耐药菌引起的,往往需要使用最后的药物。因此,降低医院医疗器械的细菌污染风险已成为一个新问题。有希望控制这些感染的途径是基于具有内在杀菌特性(即化学作用)的材料,以及能够限制细菌粘附和堵塞现象(即物理作用)的表面涂层设计,从而防止细菌生物膜的形成。在此,我们报告了通过逐层沉积具有可控取向的电纺聚(偏氟乙烯-共三氟乙烯)P(VDF-TrFE)纤维而制成的涂层的开发和验证情况,这种涂层最终形成了防污表面。所获得的 90° 取向纤维的 10 层表面形态通过建立与卡西-巴克斯特方案兼容的超疏水行为,能够有效防止细菌附着。此外,研究结果还强调,使用直径与细菌大小相当的纤维(即可以通过电纺丝工艺实现),通过调整纤维内间距,可以控制表面润湿性和细菌粘附性,这对未来生物医学表面涂层的设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
期刊最新文献
Issue Information Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1