Accuracy of Steady Pneumatic Probes in Unsteady Turbomachinery Flows

Tim Sebastian Widera, Bastian Patzer, S. Behre, Peter Jeschke
{"title":"Accuracy of Steady Pneumatic Probes in Unsteady Turbomachinery Flows","authors":"Tim Sebastian Widera, Bastian Patzer, S. Behre, Peter Jeschke","doi":"10.1115/1.4065924","DOIUrl":null,"url":null,"abstract":"\n This study shows that no additional measurement error due to unsteadiness was detected, when measuring in periodic turbomachinery flows at frequencies up to 5 kHz with steady, pneumatic probes. An experiment was designed, which consisted of abstracted rotors placed in the jet of a free stream wind tunnel. Five steady and unsteady probes were compared in the periodic, turbomachinery-like wakes at Mach numbers up to 0.8. The impacts of unsteadiness, probe head size and shape, and distance between probe and rotor were systematically investigated at up to 90 operating points. Within the limits imposed by unsteady pressure transducers, the experiments demonstrated the absence of a frequency-dependent effect on the measurements by comparing the time-averaged measurements of identically shaped steady and unsteady probes. Measurements with hemispherical five-hole probes of two sizes and kielhead probes at the same location deviated significantly due to different interaction with the upstream rotor. Distance variations between probe and rotor showed that each combination of probe and flow should be evaluated individually. The study concludes that pneumatic probes offer a reasonable means to measure the mean flow downstream of a rotor, accurately reproducing time-averaged values. However, careful individual evaluation of probes is essential to minimise measurement uncertainty.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study shows that no additional measurement error due to unsteadiness was detected, when measuring in periodic turbomachinery flows at frequencies up to 5 kHz with steady, pneumatic probes. An experiment was designed, which consisted of abstracted rotors placed in the jet of a free stream wind tunnel. Five steady and unsteady probes were compared in the periodic, turbomachinery-like wakes at Mach numbers up to 0.8. The impacts of unsteadiness, probe head size and shape, and distance between probe and rotor were systematically investigated at up to 90 operating points. Within the limits imposed by unsteady pressure transducers, the experiments demonstrated the absence of a frequency-dependent effect on the measurements by comparing the time-averaged measurements of identically shaped steady and unsteady probes. Measurements with hemispherical five-hole probes of two sizes and kielhead probes at the same location deviated significantly due to different interaction with the upstream rotor. Distance variations between probe and rotor showed that each combination of probe and flow should be evaluated individually. The study concludes that pneumatic probes offer a reasonable means to measure the mean flow downstream of a rotor, accurately reproducing time-averaged values. However, careful individual evaluation of probes is essential to minimise measurement uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非稳态透平机械流动中稳定气动探头的精度
这项研究表明,使用稳定的气动探头测量频率高达 5 kHz 的周期性涡轮机械流时,未发现因不稳定性而产生的额外测量误差。实验由放置在自由流风洞喷流中的抽象转子组成。在马赫数高达 0.8 的周期性涡轮机械样摆动中,对五个稳定和不稳定探头进行了比较。在多达 90 个工作点上系统地研究了不稳定性、探头的大小和形状以及探头与转子之间距离的影响。在非稳定压力传感器施加的限制范围内,通过比较形状相同的稳定探头和非稳定探头的时间平均测量值,实验证明测量结果不存在频率影响。使用两种尺寸的半球形五孔探头和位于同一位置的基尔头探头进行测量时,由于与上游转子的相互作用不同,因此偏差很大。探头和转子之间的距离变化表明,应单独评估探头和流量的每种组合。研究得出结论,气动探头是测量转子下游平均流量的合理方法,可以准确再现时间平均值。不过,要将测量不确定性降至最低,必须对探头进行仔细的单独评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1