{"title":"Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films","authors":"Yunhe Xu, Bo Wu, Chengyi Hou, Yaogang Li, Hongzhi Wang, Qinghong Zhang","doi":"10.1002/flm2.28","DOIUrl":null,"url":null,"abstract":"<p>Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi<sub>2</sub>Te<sub>3</sub> composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (Δ<i>T</i>), leading to a substantial Δ<i>T</i> at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a Δ<i>T</i> of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.</p>","PeriodicalId":100533,"journal":{"name":"FlexMat","volume":"1 3","pages":"248-257"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/flm2.28","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlexMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/flm2.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 μW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.
柔性热电发生器(FTEG)利用其将人体热量转化为电能的能力,是为可穿戴电子设备供电的绝佳解决方案。然而,由于材料的热电(TE)效率不足以及设备之间的温度变化极小,它们在可穿戴行业中的应用受到了限制。在这项研究中,我们开发了一种类似乐高积木的可重构 FTEG,它将柔性 TE 芯片、流变液态金属电线和可拉伸基板以机械插件的形式结合在一起。柔性 TE 芯片由 n 型无机 MXene/Bi2Te3 复合薄膜制成,通过热处理进一步增强了其 TE 特性。FTEG 的演示表明,它具有将热量转化为垂直温差(ΔT)的能力,从而在与环境接触的冷端产生大量的ΔT,因此仅 5 个 TE 芯片就能输出 7.1 μW 的功率,ΔT 为 45 K。可重新配置的 FTEG 为可穿戴设备利用低级热量提供了巨大的潜力。