Calibration of CAMS PM2.5 data over Hungary: A machine learning approach

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Research Communications Pub Date : 2024-07-11 DOI:10.1088/2515-7620/ad6239
Achraf Qor-el-aine, A. Béres, Gábor Géczi
{"title":"Calibration of CAMS PM2.5 data over Hungary: A machine learning approach","authors":"Achraf Qor-el-aine, A. Béres, Gábor Géczi","doi":"10.1088/2515-7620/ad6239","DOIUrl":null,"url":null,"abstract":"\n Air pollution is a major environmental problem, and reliable monitoring of particulate matter (PM) concentrations is critical for assessing its impact on human health and the environment. The Copernicus Atmosphere Monitoring Service (CAMS) offers vital data on PM2.5 concentrations by applying a worldwide modelling system. This study compares in-situ PM2.5 measurements and raw CAMS data at 0.1°x 0.1° resolutions for 2019 and 2020 in Hungary. It proposes a calibration method to improve the accuracy of CAMS PM2.5 data at the scale of air monitoring stations. In the study, the accuracy of the raw CAMS PM2.5 data is assessed based on the chosen air quality stations. Then, to improve the precision, we employed machine learning algorithms (LightGBM, Random Forest (RF), and Multiple Linear Regression (MLR)) for calibration. Initial assessment of the raw CAMS PM2.5 data showed positive hourly Spearman correlation coefficient values (SR between 0.64 and 0.87 for the 14 air quality stations used), indicating a positive relationship between the datasets but a systemic underestimation. Our findings highlight LightGBM as the most effective method, consistently demonstrating elevated correlation SR and R² values reaching up to 0.95 and 0.93, respectively, and very good RSR and NSE values (lower than 0.5 and higher than 0.75 for RSR and NSE, respectively). In contrast, RF yields mixed results, and MLR exhibits variable performance. By correcting underestimation and lowering modelling biases, the calibrated PM2.5 data better matches ground-based observations, which can be promising for using the obtained model for accurate predictions at individual air monitoring stations.","PeriodicalId":48496,"journal":{"name":"Environmental Research Communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Communications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/2515-7620/ad6239","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution is a major environmental problem, and reliable monitoring of particulate matter (PM) concentrations is critical for assessing its impact on human health and the environment. The Copernicus Atmosphere Monitoring Service (CAMS) offers vital data on PM2.5 concentrations by applying a worldwide modelling system. This study compares in-situ PM2.5 measurements and raw CAMS data at 0.1°x 0.1° resolutions for 2019 and 2020 in Hungary. It proposes a calibration method to improve the accuracy of CAMS PM2.5 data at the scale of air monitoring stations. In the study, the accuracy of the raw CAMS PM2.5 data is assessed based on the chosen air quality stations. Then, to improve the precision, we employed machine learning algorithms (LightGBM, Random Forest (RF), and Multiple Linear Regression (MLR)) for calibration. Initial assessment of the raw CAMS PM2.5 data showed positive hourly Spearman correlation coefficient values (SR between 0.64 and 0.87 for the 14 air quality stations used), indicating a positive relationship between the datasets but a systemic underestimation. Our findings highlight LightGBM as the most effective method, consistently demonstrating elevated correlation SR and R² values reaching up to 0.95 and 0.93, respectively, and very good RSR and NSE values (lower than 0.5 and higher than 0.75 for RSR and NSE, respectively). In contrast, RF yields mixed results, and MLR exhibits variable performance. By correcting underestimation and lowering modelling biases, the calibrated PM2.5 data better matches ground-based observations, which can be promising for using the obtained model for accurate predictions at individual air monitoring stations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
校准匈牙利上空的 CAMS PM2.5 数据:机器学习方法
空气污染是一个重大的环境问题,对颗粒物(PM)浓度的可靠监测对于评估其对人类健康和环境的影响至关重要。哥白尼大气监测服务(CAMS)通过应用全球建模系统,提供了 PM2.5 浓度的重要数据。本研究比较了 2019 年和 2020 年匈牙利 0.1°x 0.1° 分辨率下的 PM2.5 原位测量值和原始 CAMS 数据。研究提出了一种校准方法,以提高空气监测站范围内 CAMS PM2.5 数据的准确性。在研究中,根据所选的空气质量监测站评估了 CAMS PM2.5 原始数据的准确性。然后,为了提高精度,我们采用机器学习算法(LightGBM、随机森林(RF)和多元线性回归(MLR))进行校准。对 CAMS PM2.5 原始数据的初步评估显示,每小时斯皮尔曼相关系数为正值(所使用的 14 个空气质量站的 SR 值介于 0.64 和 0.87 之间),表明数据集之间存在正相关关系,但存在系统性低估。我们的研究结果表明,LightGBM 是最有效的方法,其相关性 SR 和 R² 值分别高达 0.95 和 0.93,RSR 和 NSE 值也非常好(RSR 和 NSE 值分别低于 0.5 和高于 0.75)。相比之下,RF 的结果好坏参半,而 MLR 则表现不一。通过纠正低估和降低建模偏差,校准后的 PM2.5 数据与地面观测数据更加吻合,这对于利用所获得的模型对单个空气监测站进行精确预测大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research Communications
Environmental Research Communications ENVIRONMENTAL SCIENCES-
CiteScore
3.50
自引率
0.00%
发文量
136
期刊最新文献
Effect of atmospheric response induced by preceding typhoon on movement of subsequent typhoon over Northwestern Pacific From consumption to context: assessing poverty and inequality across diverse socio-ecological systems in Ghana Deciphering the degradation of sulfonamides by UV/chlorination in aqueous solution: kinetics, reaction pathways, and toxicological evolution Per-and polyfluoroalkyl substances removal in water and wastewater treatment plants: overall efficiency and performance of adsorption The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1