Sensitivity of Permafrost Degradation to Geological and Climatic Conditions

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Permafrost and Periglacial Processes Pub Date : 2024-07-10 DOI:10.1002/ppp.2245
Lei Guo, Y. Ran, Xin Li, Huijun Jin, Guodong Cheng
{"title":"Sensitivity of Permafrost Degradation to Geological and Climatic Conditions","authors":"Lei Guo, Y. Ran, Xin Li, Huijun Jin, Guodong Cheng","doi":"10.1002/ppp.2245","DOIUrl":null,"url":null,"abstract":"Permafrost degradation varies spatially; however, the underlying mechanism remains partially unclear. In this study, we predicted permafrost variation under the influence of climate change to investigate the sensitivity of permafrost degradation to geological and climatic conditions. The results revealed that geological strata can strongly impact the permafrost degradation process. Mainly due to the greater thermal conductivity of sandy gravel in the Arctic, the complete thaw of permafrost will be greatly delayed by more than 160 years compared with that on the Qinghai–Tibet Plateau (QTP). Climatic conditions, such as snow depth, can also greatly affect the degradation process of permafrost: The thaw of permafrost will be delayed by more than 140 years when the snow depth decreases from 0.7 to 0.1 m. Peat soil thickness at ground surface can also affect permafrost degradation. The permafrost temperature increases as peat soil thickens when the thickness is less than 1.0 m, whereas there is a critical peat soil thickness (approximately 0.2 and 0.5 m on the QTP and in the Arctic, respectively) under which permafrost will thaw at the fastest rate. The findings highlight the influence of geology and climate over permafrost degradation.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2245","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Permafrost degradation varies spatially; however, the underlying mechanism remains partially unclear. In this study, we predicted permafrost variation under the influence of climate change to investigate the sensitivity of permafrost degradation to geological and climatic conditions. The results revealed that geological strata can strongly impact the permafrost degradation process. Mainly due to the greater thermal conductivity of sandy gravel in the Arctic, the complete thaw of permafrost will be greatly delayed by more than 160 years compared with that on the Qinghai–Tibet Plateau (QTP). Climatic conditions, such as snow depth, can also greatly affect the degradation process of permafrost: The thaw of permafrost will be delayed by more than 140 years when the snow depth decreases from 0.7 to 0.1 m. Peat soil thickness at ground surface can also affect permafrost degradation. The permafrost temperature increases as peat soil thickens when the thickness is less than 1.0 m, whereas there is a critical peat soil thickness (approximately 0.2 and 0.5 m on the QTP and in the Arctic, respectively) under which permafrost will thaw at the fastest rate. The findings highlight the influence of geology and climate over permafrost degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
永冻土退化对地质和气候条件的敏感性
永久冻土的退化在空间上各不相同,但其基本机制仍部分不清楚。在这项研究中,我们预测了气候变化影响下的冻土变化,以研究冻土退化对地质和气候条件的敏感性。研究结果表明,地质层会对冻土降解过程产生强烈影响。主要由于北极地区沙砾的导热性能更强,与青藏高原相比,冻土完全融化的时间将大大推迟 160 多年。气候条件,如积雪深度,也会在很大程度上影响永久冻土的退化过程:当积雪深度从 0.7 米降至 0.1 米时,冻土融化将延迟 140 多年。地表泥炭土厚度也会影响永久冻土的退化。当泥炭土厚度小于 1.0 米时,永久冻土温度会随着泥炭土厚度的增加而升高,而泥炭土厚度存在一个临界值(在 QTP 和北极地区分别约为 0.2 米和 0.5 米),在该临界值下,永久冻土将以最快的速度融化。这些发现凸显了地质和气候对永久冻土退化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.70
自引率
8.00%
发文量
43
审稿时长
>12 weeks
期刊介绍: Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.
期刊最新文献
Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review Synchronous Isotopic Curves in Ice Wedges of the Batagay Yedoma: Precision Matching and Similarity Scoring Sensitivity of Permafrost Degradation to Geological and Climatic Conditions A Biogeochemical Study of Greenhouse Gas Formation From Two Ice Complexes of Batagay Megaslump, East Siberia Optically‐Stimulated‐Luminescence Ages and Paleo‐Environmental Implications of Relict Frost Wedges in North–Central Bohemia, Czech Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1