Feng Cao, Ruirong Dang, Bo Dang, Huifeng Zheng, A. Ji, Zhanjun Chen
{"title":"Measurement of Air-Water Counter-Current Flow Rates in Vertical Annulus Using Multiple Differential Pressure Signals and Machine Learning","authors":"Feng Cao, Ruirong Dang, Bo Dang, Huifeng Zheng, A. Ji, Zhanjun Chen","doi":"10.1088/1361-6501/ad6174","DOIUrl":null,"url":null,"abstract":"\n Gas-liquid counter-current flow in vertical annulus is involved in multiple industrial fields such as petroleum engineering. For instance, in coalbed methane wells where liquid pumping is utilized, obtaining real-time gas-liquid flow in the annulus is crucial for the development and management of coalbed methane wells. However, due to complex flow conditions, this requirement is difficult to achieve through traditional flow measurement means. Therefore, this paper proposes a flow prediction method based on multiple sets of differential pressure signals and machine learning techniques. Experiments on air-water two-phase flow were conducted on a vertical annulus pipe with an inner/outer diameter of 75mm/125mm and adjustable eccentricity. The probability density function and power spectral density function of three sets of differential pressure signals collected at different heights in the annulus pipe were used as model inputs, and gas-liquid flow rate as output. A gas-liquid two-phase flow prediction model was constructed based on the artificial neural network model, and the hyper-parameters of the model were optimized using Bayesian optimization. The results show that on a test dataset of 440 combinations of conditions with air superficial velocity of 0.06~5.04m/s, water superficial velocity of 0.03~0.25m/s, and pipe eccentricity of 0, 0.25, 0.5, 0.75, 1, the model can achieve average prediction errors of 9.12% and 29.34% for gas and water flow, respectively. This indicates that the method can be applied to non-throttling, non-intrusive measurement of phase flow under annulus gas-liquid counter-current flow conditions.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad6174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gas-liquid counter-current flow in vertical annulus is involved in multiple industrial fields such as petroleum engineering. For instance, in coalbed methane wells where liquid pumping is utilized, obtaining real-time gas-liquid flow in the annulus is crucial for the development and management of coalbed methane wells. However, due to complex flow conditions, this requirement is difficult to achieve through traditional flow measurement means. Therefore, this paper proposes a flow prediction method based on multiple sets of differential pressure signals and machine learning techniques. Experiments on air-water two-phase flow were conducted on a vertical annulus pipe with an inner/outer diameter of 75mm/125mm and adjustable eccentricity. The probability density function and power spectral density function of three sets of differential pressure signals collected at different heights in the annulus pipe were used as model inputs, and gas-liquid flow rate as output. A gas-liquid two-phase flow prediction model was constructed based on the artificial neural network model, and the hyper-parameters of the model were optimized using Bayesian optimization. The results show that on a test dataset of 440 combinations of conditions with air superficial velocity of 0.06~5.04m/s, water superficial velocity of 0.03~0.25m/s, and pipe eccentricity of 0, 0.25, 0.5, 0.75, 1, the model can achieve average prediction errors of 9.12% and 29.34% for gas and water flow, respectively. This indicates that the method can be applied to non-throttling, non-intrusive measurement of phase flow under annulus gas-liquid counter-current flow conditions.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.