Logistic Smooth Transition Autoregressive (LSTAR) and Exponential Smooth Transition Autoregressive (ESTAR) Methods in Predicting the Exchange Rate of Farmers in Lampung Province, Indonesia

Chyntia Taurinna Krisanti, Netti Herawati, Agus Sutrisno, Nusyirwan Nusyirwan
{"title":"Logistic Smooth Transition Autoregressive (LSTAR) and Exponential Smooth Transition Autoregressive (ESTAR) Methods in Predicting the Exchange Rate of Farmers in Lampung Province, Indonesia","authors":"Chyntia Taurinna Krisanti, Netti Herawati, Agus Sutrisno, Nusyirwan Nusyirwan","doi":"10.47191/ijmra/v7-i07-18","DOIUrl":null,"url":null,"abstract":"There are many time series forecasting techniques, one of which is Smooth Transition Autoregressive (STAR). STAR is an extension of the autoregressive model for nonlinear time series data. The STAR model consists of the Logistic STAR (LSTAR) model and the Exponential STAR (ESTAR) model. The aim of this research is to compare which model is more suitable for predicting farmer exchange rates in Lampung Province, Indonesia. The results of this research show that the ESTAR model outperforms the LSTAR model based on a smaller AIC.","PeriodicalId":506697,"journal":{"name":"INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND ANALYSIS","volume":"25 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47191/ijmra/v7-i07-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are many time series forecasting techniques, one of which is Smooth Transition Autoregressive (STAR). STAR is an extension of the autoregressive model for nonlinear time series data. The STAR model consists of the Logistic STAR (LSTAR) model and the Exponential STAR (ESTAR) model. The aim of this research is to compare which model is more suitable for predicting farmer exchange rates in Lampung Province, Indonesia. The results of this research show that the ESTAR model outperforms the LSTAR model based on a smaller AIC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测印度尼西亚楠榜省农民汇率的逻辑平滑过渡自回归(LSTAR)和指数平滑过渡自回归(ESTAR)方法
时间序列预测技术有很多,平滑过渡自回归(STAR)就是其中之一。STAR 是针对非线性时间序列数据的自回归模型的扩展。STAR 模型包括逻辑 STAR(LSTAR)模型和指数 STAR(ESTAR)模型。本研究旨在比较哪种模型更适合预测印度尼西亚楠榜省的农民汇率。研究结果表明,基于较小的 AIC,ESTAR 模型优于 LSTAR 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influencing Factors in Pursuing Graduate Degree Program toward Teachers’ Quality of Life Molecular Epidemiological Characterization of Giardia Lamblia in Kirkuk, Iraq Exposure to Particulate Matter Affects Lung Function and Performance: A Literature Review Digital Divide as a Dynamic Challenge and a Leveraging Opportunity: A Phenomenological Study on Seasoned TLE/TVL Teachers' Adaptive Pedagogy Cultivating Action Research Culture among Teachers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1