{"title":"A Reconstruction Methodology of Dynamic Construction Site Activities in 3D Digital Twin Models Based on Camera Information","authors":"Jingyao He, Pengfei Li, Xuehui An, Chengzhi Wang","doi":"10.3390/buildings14072113","DOIUrl":null,"url":null,"abstract":"Digital twin technology significantly enhances construction site management efficiency; however, dynamically reconstructing site activities presents a considerable challenge. This study introduces a methodology that leverages camera data for the 3D reconstruction of construction site activities. The methodology was initiated using 3D scanning to meticulously reconstruct the construction scene and dynamic elements, forming a model base. It further integrates deep learning algorithms to precisely identify static and dynamic elements in obstructed environments. An enhanced semi-global block-matching algorithm was then applied to derive depth information from the imagery, facilitating accurate element localization. Finally, a near-real-time projection method was introduced that utilizes the spatial relationships among elements to dynamically incorporate models into a 3D base, enabling a multi-perspective view of site activities. Validated by simulated construction site experiments, this methodology showcased an impressive reconstruction accuracy reaching up to 95%, this underscores its significant potential in enhancing the efficiency of creating a dynamic digital twin model.","PeriodicalId":505657,"journal":{"name":"Buildings","volume":"79 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/buildings14072113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Digital twin technology significantly enhances construction site management efficiency; however, dynamically reconstructing site activities presents a considerable challenge. This study introduces a methodology that leverages camera data for the 3D reconstruction of construction site activities. The methodology was initiated using 3D scanning to meticulously reconstruct the construction scene and dynamic elements, forming a model base. It further integrates deep learning algorithms to precisely identify static and dynamic elements in obstructed environments. An enhanced semi-global block-matching algorithm was then applied to derive depth information from the imagery, facilitating accurate element localization. Finally, a near-real-time projection method was introduced that utilizes the spatial relationships among elements to dynamically incorporate models into a 3D base, enabling a multi-perspective view of site activities. Validated by simulated construction site experiments, this methodology showcased an impressive reconstruction accuracy reaching up to 95%, this underscores its significant potential in enhancing the efficiency of creating a dynamic digital twin model.