{"title":"Analyzing effects of environmental indices on satellite remote sensing land surface temperature using spatial regression models","authors":"Hamed Faroqi","doi":"10.1007/s12518-024-00568-5","DOIUrl":null,"url":null,"abstract":"<div><p>Land Surface Temperature (LST) is a vital satellite remote sensing-driven indicator of earth heat studies. LST can provide information about urban heat emission, urban climate, and human activities in urban areas. In recent years, the calculated LST for a satellite image pixel has been studied as a parameter affected by urban environment factors such as available land cover types in the same pixel. However, in this study, a scenario in which the calculated LST for a pixel is not only affected by the factors in the same pixel but also by the factors in the neighbor pixels is studied. Firstly, required maps for the calculated LST and influential factors (indicators of vegetation, building, and water surfaces) are produced from satellite remote sensing images. Secondly, the relationship between the LST and influential factors is modeled using the Ordinary Least Squares (OLS) model. Thirdly, Moran’s I and Lagrange Multiplier tests are used to analyze the existence of spatial dependency and correlation in residuals of the OLS model. Fourthly, three spatial regression models (Spatially Lagged X (SLX), Spatial Lag (SL), and Spatial Error (SE) models) are used to model the spatial dependency and correlation between the LST and influential factors. Finally, the outcomes of the models are compared and evaluated. Results present related maps for the variables besides maps for spatial residuals in the spatial regression models. The outcomes of the models are investigated by p-values, log-likelihood, and RMSE. To conclude, the spatial regression models fitted the relation between the dependent and independent variables better than the OLS model.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 3","pages":"629 - 638"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00568-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Land Surface Temperature (LST) is a vital satellite remote sensing-driven indicator of earth heat studies. LST can provide information about urban heat emission, urban climate, and human activities in urban areas. In recent years, the calculated LST for a satellite image pixel has been studied as a parameter affected by urban environment factors such as available land cover types in the same pixel. However, in this study, a scenario in which the calculated LST for a pixel is not only affected by the factors in the same pixel but also by the factors in the neighbor pixels is studied. Firstly, required maps for the calculated LST and influential factors (indicators of vegetation, building, and water surfaces) are produced from satellite remote sensing images. Secondly, the relationship between the LST and influential factors is modeled using the Ordinary Least Squares (OLS) model. Thirdly, Moran’s I and Lagrange Multiplier tests are used to analyze the existence of spatial dependency and correlation in residuals of the OLS model. Fourthly, three spatial regression models (Spatially Lagged X (SLX), Spatial Lag (SL), and Spatial Error (SE) models) are used to model the spatial dependency and correlation between the LST and influential factors. Finally, the outcomes of the models are compared and evaluated. Results present related maps for the variables besides maps for spatial residuals in the spatial regression models. The outcomes of the models are investigated by p-values, log-likelihood, and RMSE. To conclude, the spatial regression models fitted the relation between the dependent and independent variables better than the OLS model.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements