Experimental and Numerical Study of Newly Assembled Lightweight Radiant Floor Heating System

B. Zhang, Yongjuan Wang, Ming Liu, Zhongbing Zhang
{"title":"Experimental and Numerical Study of Newly Assembled Lightweight Radiant Floor Heating System","authors":"B. Zhang, Yongjuan Wang, Ming Liu, Zhongbing Zhang","doi":"10.3390/buildings14072096","DOIUrl":null,"url":null,"abstract":"In this study, the heating capacity of a new prefabricated assembled hot water radiant modular heating system made from a recycled waste building masonry structure is investigated through experimental and numerical simulation methods. The heating capacity of the system in different working conditions (a water supply temperature of 48 °C, 51 °C, 56 °C, and 61 °C; a flow rate of 0.49 m3/h, 0.35 m3/h, and 0.21 m3/h) is analyzed and verified. A three-dimensional steady-state heat transfer numerical model of the floor heat transfer of the module is established, and the accuracy of the model is verified through the measured results to investigate the heating capacity of this system under different water supply temperatures, flow rates and coil spacings. The results show that the new prefabricated hot water radiant module heating system has a 0.9 °C higher air temperature and 2.1 °C higher average floor surface temperature than the traditional wet floor radiant heating system under the same experimental conditions, and the response time is 44% shorter. The water supply temperature can significantly change the heating capacity of the system, while the water supply flow rate has little effect on the system. The established three-dimensional steady-state numerical model can be in good agreement with the measured results. This study can provide an experimental and theoretical basis for the design and application of such systems.","PeriodicalId":505657,"journal":{"name":"Buildings","volume":"85 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/buildings14072096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the heating capacity of a new prefabricated assembled hot water radiant modular heating system made from a recycled waste building masonry structure is investigated through experimental and numerical simulation methods. The heating capacity of the system in different working conditions (a water supply temperature of 48 °C, 51 °C, 56 °C, and 61 °C; a flow rate of 0.49 m3/h, 0.35 m3/h, and 0.21 m3/h) is analyzed and verified. A three-dimensional steady-state heat transfer numerical model of the floor heat transfer of the module is established, and the accuracy of the model is verified through the measured results to investigate the heating capacity of this system under different water supply temperatures, flow rates and coil spacings. The results show that the new prefabricated hot water radiant module heating system has a 0.9 °C higher air temperature and 2.1 °C higher average floor surface temperature than the traditional wet floor radiant heating system under the same experimental conditions, and the response time is 44% shorter. The water supply temperature can significantly change the heating capacity of the system, while the water supply flow rate has little effect on the system. The established three-dimensional steady-state numerical model can be in good agreement with the measured results. This study can provide an experimental and theoretical basis for the design and application of such systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型装配式轻质地板辐射供暖系统的实验和数值研究
本研究通过实验和数值模拟方法研究了一种新型预制装配式热水辐射模块供暖系统的供暖能力,该系统由回收的废弃建筑砌体结构制成。分析并验证了该系统在不同工况(供水温度分别为 48 ℃、51 ℃、56 ℃ 和 61 ℃;流量分别为 0.49 m3/h、0.35 m3/h 和 0.21 m3/h)下的供热能力。建立了模块地板传热的三维稳态传热数值模型,并通过测量结果验证了模型的准确性,研究了该系统在不同供水温度、流量和盘管间距下的供热能力。结果表明,在相同的实验条件下,新型预制热水辐射模块供暖系统比传统湿式地板辐射供暖系统的空气温度高 0.9 ℃,地板表面平均温度高 2.1 ℃,响应时间缩短了 44%。供水温度会明显改变系统的供热能力,而供水流量对系统影响不大。建立的三维稳态数值模型与测量结果吻合良好。这项研究可为此类系统的设计和应用提供实验和理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Factor Orthogonal Experiments and Enhancement Mechanisms of Unconfined Compressive Strength of Soda Residue Cement Lime Soil Performance Evaluation of Multiple Aging-Regeneration of SBS-Modified Bitumen Regenerated by a Composite Rejuvenator Classroom Interior Design: Wooden Furniture Prototype with Feedback from Students and Teachers Visual Analysis of Social Media Data on Experiences at a World Heritage Tourist Destination: Historic Centre of Macau Enhancement of Compressive Strength and Durability of Sulfate-Attacked Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1